Background: Head and neck squamous cell carcinoma (HNSCC) represents a predominant type of cancer found in the head and neck region, characterized by a high incidence and unfavorable prognosis. The IGF2BPs gene family, which belongs to the RNA-binding protein class, has been critically implicated in several cancers, and its involvement in HNSCC necessitates further exploration.
Objective: To explore the clinical significance and potential biological functions of the IGF2BPs gene family in HNSCC.
Methods: A bioinformatic methodology was employed to examine the expression profile, diagnostic and prognostic significance, and biological mechanisms of the IGF2BPs gene family in HNSCC, with a particular emphasis on its involvement in the immune function of HNSCC. This was followed by in vitro investigations to unravel the biological roles of the IGF2BPs gene family in HNSCC.
Results: This investigation has demonstrated that, in contrast with normal control tissue, HNSCC has a substantial elevation in the expression level of the IGF2BPs gene family. Patients with a high level of IGF2BPs gene family expression demonstrated higher prediction accuracy for HNSCC. Furthermore, patients with HNSCC and elevated IGF2BPs gene family expression levels exhibited poor survival outcomes. The IGF2BPs gene family displayed a significant association with a variety of immune infiltrating cells and immune genes in HNSCC. Studies conducted in vitro have confirmed that IGF2BP2 silencing suppressed the migration, proliferation, and invasion of HNSCC cells.
Conclusions: It has been determined that the IGF2BPs gene family plays a crucial part in the onset and progression of HNSCC, and its association with tumor immunity has been established. The IGF2BPs gene family holds promising potential as a diagnostic and prognostic biomarker for HNSCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568114 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e20659 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!