Feasibility analysis of magnetic resonance imaging-based radiomics features for preoperative prediction of nuclear grading of ductal carcinoma in situ.

Gland Surg

Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.

Published: September 2023

Background: The nuclear grading of ductal carcinoma in situ (DCIS) affects its clinical risk. The aim of this study was to investigate the possibility of predicting the nuclear grading of DCIS, by magnetic resonance imaging (MRI)-based radiomics features. And to develop a nomogram combining radiomics features and MRI semantic features to explore the potential role of MRI radiomic features in the assessment of DCIS nuclear grading.

Methods: A total of 156 patients (159 lesions) with DCIS and DCIS with microinvasive (DCIS-MI) were enrolled in this retrospective study, with 112 lesions included in the training cohort and 47 lesions included in the validation cohort. Radiomics features were extracted from Dynamic contrast-enhanced MRI (DCE-MRI) phases 1 and 5. After feature selection, radiomics signature was constructed and radiomics score (Rad-score) was calculated. Multivariate analysis was used to identify MRI semantic features that were significantly associated with DCIS nuclear grading and combined with Rad-score to construct a Nomogram. Receiver operating characteristic curves were used to evaluate the predictive performance of Rad-score and Nomogram, and decision curve analysis (DCA) was used to evaluate the clinical utility.

Results: In multivariate analyses of MRI semantic features, larger tumor size and heterogeneous enhancement pattern were significantly associated with high-nuclear grade DCIS (HNG DCIS). In the training cohort, Nomogram had an area under curve (AUC) of 0.879 and Rad-score had an AUC of 0.828. Similarly, in the independent validation cohort, Nomogram had an AUC value of 0.828 and Rad-score had an AUC of 0.772. In both the training and validation cohorts, Nomogram had a significantly higher AUC value than Rad-score (P<0.05). DCA confirmed that Nomogram had a higher net clinical benefit.

Conclusions: MRI-based radiomic features can be used as potential biomarkers for assessing nuclear grading of DCIS. The nomogram constructed by radiomic features combined with semantic features is feasible in discriminating non-HNG and HNG DCIS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570967PMC
http://dx.doi.org/10.21037/gs-23-132DOI Listing

Publication Analysis

Top Keywords

radiomics features
16
nuclear grading
16
mri semantic
12
semantic features
12
magnetic resonance
8
features
8
grading ductal
8
ductal carcinoma
8
carcinoma situ
8
dcis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!