Bacteria are ubiquitous lifeforms with important roles in the environment, biotechnology, and human health. Many of the functions that bacteria perform are mediated by proteins and enzymes, which catalyze metabolic transformations of small molecules and modifications of proteins. To better understand these biological processes, chemical proteomic approaches, including activity-based protein profiling, have been developed to interrogate protein function and enzymatic activity in physiologically relevant contexts. Here, chemoproteomic strategies and technological advances for studying bacterial physiology, pathogenesis, and metabolism are discussed. The development of chemoproteomic approaches for characterizing protein function and enzymatic activity within bacteria remains an active area of research, and continued innovations are expected to provide breakthroughs in understanding bacterial biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575470 | PMC |
http://dx.doi.org/10.1002/ijch.202200076 | DOI Listing |
Bioorg Med Chem
December 2024
Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China. Electronic address:
Protein post-translational modification (PTM) serves as an important mechanism for regulating protein function. Accurate assay of PTM stoichiometry, or PTM occupancy, which refers to the proportion of proteins that contain specific modifications, is important for understanding the function of PTMs. We previously developed a novel chemoproteomic strategy "STO-MS" to quantify the PTM stoichiometry in complex biological samples, which employs a resolvable polymer mass tag to differentiate modified proteins and utilizes liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques to measure PTM stoichiometry.
View Article and Find Full Text PDFMol Cell Proteomics
December 2024
Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA; Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, 90095, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA; DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA. Electronic address:
Cysteine chemoproteomic screening platforms are widely utilized for chemical probe and drug discovery campaigns. Chemoproteomic compound screens, which use a mass spectrometry-based proteomic readout, can interrogate the structure activity relationship (SAR) for thousands of proteins in parallel across the proteome. The versatility of chemoproteomic screens has been demonstrated across electrophilic, nucleophilic, and reversible classes of molecules.
View Article and Find Full Text PDFFront Plant Sci
November 2024
National Tobacco Cultivation, Physiology and Biochemistry Research Center, Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China.
ACS Cent Sci
November 2024
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
bioRxiv
November 2024
Department of Pharmacology & Toxicology, University of Utah, 84112 Salt Lake City, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!