https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37842165&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3784216520231020
2162-2531342023Dec12Molecular therapy. Nucleic acidsMol Ther Nucleic AcidsA mutual regulatory loop between miR-155 and SOCS1 influences renal inflammation and diabetic kidney disease.10204110204110204110.1016/j.omtn.2023.102041Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, a global health issue. Hyperglycemia, in concert with cytokines, activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway to induce inflammation and oxidative stress contributing to renal damage. There is evidence of microRNA-155 (miR-155) involvement in diabetes complications, but the underlying mechanisms are unclear. In this study, gain- and loss-of-function experiments were conducted to investigate the interplay between miR-155-5p and suppressor of cytokine signaling 1 (SOCS1) in the regulation of the JAK/STAT pathway during renal inflammation and DKD. In experimental models of mesangial injury and diabetes, miR-155-5p expression correlated inversely with SOCS1 and positively with albuminuria and expression levels of cytokines and prooxidant genes. In renal cells, miR-155-5p mimic downregulated SOCS1 and promoted STAT1/3 activation, cytokine expression, and cell proliferation and migration. Conversely, both miR-155-5p antagonism and SOCS1 overexpression protected cells from inflammation and hyperglycemia damage. In vivo, SOCS1 gene delivery decreased miR-155-5p and kidney injury in diabetic mice. Moreover, therapeutic inhibition of miR-155-5p suppressed STAT1/3 activation and alleviated albuminuria, mesangial damage, and renal expression of inflammatory and fibrotic genes. In conclusion, modulation of the miR-155/SOCS1 axis protects kidneys against diabetic damage, thus highlighting its potential as therapeutic target for DKD.© 2023 The Author(s).PrietoIgnacioIRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.KavanaghMaríaMRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.Jimenez-CastillaLunaLRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.PardinesMarisaMRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.LazaroIolandaICardiovascular Risk and Nutrition, Hospital del Mar Medical Research Institute-IMIM, 08003 Barcelona, Spain.Herrero Del RealIsabelIRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.Flores-MuñozMonicaMTranslational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico.EgidoJesusJRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.Lopez-FrancoOscarOTranslational Medicine Lab, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91140, Veracruz, Mexico.Gomez-GuerreroCarmenCRenal, Vascular and Diabetes Research Lab, Instituto de Investigaciones Sanitarias-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid (UAM), 28040 Madrid, Spain.Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain.engJournal Article20230927
United StatesMol Ther Nucleic Acids1015816212162-2531JAK/STAT/SOCSMT: Non-coding RNAs: diabetescytokinesdiabetic kidney diseasefibrosishyperglycemiamicroRNArenal inflammationsignal transductionAll the authors declared no competing interests.
202342820239232023101664920231016648202310164492023927epublish37842165PMC1057103310.1016/j.omtn.2023.102041S2162-2531(23)00259-7Fowler M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes. 2008;26:77–82. doi: 10.2337/diaclin.26.2.77.10.2337/diaclin.26.2.77Sugahara M., Pak W.L.W., Tanaka T., Tang S.C.W., Nangaku M. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology. 2021;26:491–500. doi: 10.1111/nep.13860.10.1111/nep.1386033550672Russo G., Piscitelli P., Giandalia A., Viazzi F., Pontremoli R., Fioretto P., De Cosmo S. Atherogenic dyslipidemia and diabetic nephropathy. J. Nephrol. 2020;33:1001–1008. doi: 10.1007/s40620-020-00739-8.10.1007/s40620-020-00739-832328901Pichler R., Afkarian M., Dieter B.P., Tuttle K.R. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 2017;312 doi: 10.1152/ajprenal.00314.2016. F716-f731.10.1152/ajprenal.00314.2016PMC610980827558558Fernandez-Fernandez B., Ortiz A., Gomez-Guerrero C., Egido J. Therapeutic approaches to diabetic nephropathy--beyond the RAS. Nat. Rev. Nephrol. 2014;10:325–346. doi: 10.1038/nrneph.2014.74.10.1038/nrneph.2014.7424802062O'Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018;9:402. doi: 10.3389/fendo.2018.00402.10.3389/fendo.2018.00402PMC608546330123182Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011;12:861–874. doi: 10.1038/nrg3074.10.1038/nrg307422094949Barutta F., Bellini S., Mastrocola R., Bruno G., Gruden G. MicroRNA and Microvascular Complications of Diabetes. Internet J. Endocrinol. 2018;2018:6890501. doi: 10.1155/2018/6890501.10.1155/2018/6890501PMC586330529707000Mahtal N., Lenoir O., Tinel C., Anglicheau D., Tharaux P.L. MicroRNAs in kidney injury and disease. Nat. Rev. Nephrol. 2022;18:643–662. doi: 10.1038/s41581-022-00608-6.10.1038/s41581-022-00608-635974169Conserva F., Barozzino M., Pesce F., Divella C., Oranger A., Papale M., Sallustio F., Simone S., Laviola L., Giorgino F., et al. Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Sci. Rep. 2019;9:11357. doi: 10.1038/s41598-019-47778-1.10.1038/s41598-019-47778-1PMC668481731388051Beltrami C., Simpson K., Jesky M., Wonnacott A., Carrington C., Holmans P., Newbury L., Jenkins R., Ashdown T., Dayan C., et al. Association of Elevated Urinary miR-126, miR-155, and miR-29b with Diabetic Kidney Disease. Am. J. Pathol. 2018;188:1982–1992. doi: 10.1016/j.ajpath.2018.06.006.10.1016/j.ajpath.2018.06.00629981742Chen H.Y., Zhong X., Huang X.R., Meng X.M., You Y., Chung A.C., Lan H.Y. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol. Ther. 2014;22:842–853. doi: 10.1038/mt.2013.235.10.1038/mt.2013.235PMC398250224445937Mahesh G., Biswas R. MicroRNA-155: A Master Regulator of Inflammation. J. Interferon Cytokine Res. 2019;39:321–330. doi: 10.1089/jir.2018.0155.10.1089/jir.2018.0155PMC659177330998423Jankauskas S.S., Gambardella J., Sardu C., Lombardi A., Santulli G. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding. RNA. 2021;7:39. doi: 10.3390/ncrna7030039.10.3390/ncrna7030039PMC829347034287359Krebs C.F., Kapffer S., Paust H.J., Schmidt T., Bennstein S.B., Peters A., Stege G., Brix S.R., Meyer-Schwesinger C., Müller R.U., et al. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J. Am. Soc. Nephrol. 2013;24:1955–1965. doi: 10.1681/asn.2013020130.10.1681/asn.2013020130PMC383954923949802Huang Y., Liu Y., Li L., Su B., Yang L., Fan W., Yin Q., Chen L., Cui T., Zhang J., et al. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 2014;15:142. doi: 10.1186/1471-2369-15-142.10.1186/1471-2369-15-142PMC423666325182190Wang X., Gao Y., Yi W., Qiao Y., Hu H., Wang Y., Hu Y., Wu S., Sun H., Zhang T. Inhibition of miRNA-155 Alleviates High Glucose-Induced Podocyte Inflammation by Targeting SIRT1 in Diabetic Mice. J. Diabetes Res. 2021;2021:5597394. doi: 10.1155/2021/5597394.10.1155/2021/5597394PMC796003933748285Lin X., You Y., Wang J., Qin Y., Huang P., Yang F. MicroRNA-155 deficiency promotes nephrin acetylation and attenuates renal damage in hyperglycemia-induced nephropathy. Inflammation. 2015;38:546–554. doi: 10.1007/s10753-014-9961-7.10.1007/s10753-014-9961-724969676Lin X., Zhen X., Huang H., Wu H., You Y., Guo P., Gu X., Yang F. Role of MiR-155 Signal Pathway in Regulating Podocyte Injury Induced by TGF-β1. Cell. Physiol. Biochem. 2017;42:1469–1480. doi: 10.1159/000479211.10.1159/00047921128719898Moreno J.A., Gomez-Guerrero C., Mas S., Sanz A.B., Lorenzo O., Ruiz-Ortega M., Opazo L., Mezzano S., Egido J. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin. Investig. Drugs. 2018;27:917–930. doi: 10.1080/13543784.2018.1538352.10.1080/13543784.2018.153835230334635Banerjee S., Biehl A., Gadina M., Hasni S., Schwartz D.M. JAK-STAT Signaling as a Target for Inflammatory and Autoimmune Diseases: Current and Future Prospects. Drugs. 2017;77:521–546. doi: 10.1007/s40265-017-0701-9.10.1007/s40265-017-0701-9PMC710228628255960Sharma J., Larkin J., 3rd Therapeutic Implication of SOCS1 Modulation in the Treatment of Autoimmunity and Cancer. Front. Pharmacol. 2019;10:324. doi: 10.3389/fphar.2019.00324.10.3389/fphar.2019.00324PMC649917831105556Zhang Y., Jin D., Kang X., Zhou R., Sun Y., Lian F., Tong X. Signaling Pathways Involved in Diabetic Renal Fibrosis. Front. Cell Dev. Biol. 2021;9:696542. doi: 10.3389/fcell.2021.696542.10.3389/fcell.2021.696542PMC831438734327204Tuttle K.R., Brosius F.C., 3rd, Adler S.G., Kretzler M., Mehta R.L., Tumlin J.A., Tanaka Y., Haneda M., Liu J., Silk M.E., et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 2018;33:1950–1959. doi: 10.1093/ndt/gfx377.10.1093/ndt/gfx377PMC621272029481660Recio C., Lazaro I., Oguiza A., Lopez-Sanz L., Bernal S., Blanco J., Egido J., Gomez-Guerrero C. Suppressor of Cytokine Signaling-1 Peptidomimetic Limits Progression of Diabetic Nephropathy. J. Am. Soc. Nephrol. 2017;28:575–585.PMC528002227609616Ren Y., Cui Y., Xiong X., Wang C., Zhang Y. Inhibition of microRNA-155 alleviates lipopolysaccharide-induced kidney injury in mice. Int. J. Clin. Exp. Pathol. 2017;10:9362–9371.PMC696596931966808Jiang S., Zhang H.W., Lu M.H., He X.H., Li Y., Gu H., Liu M.F., Wang E.D. MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70:3119–3127. doi: 10.1158/0008-5472.Can-09-4250.10.1158/0008-5472.Can-09-425020354188Jablonski K.A., Gaudet A.D., Amici S.A., Popovich P.G., Guerau-de-Arellano M. Control of the Inflammatory Macrophage Transcriptional Signature by miR-155. PLoS One. 2016;11:e0159724. doi: 10.1371/journal.pone.0159724.10.1371/journal.pone.0159724PMC495780327447824Li S., Chen T., Zhong Z., Wang Y., Li Y., Zhao X. microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol. Med. Rep. 2012;5:949–954. doi: 10.3892/mmr.2012.779.10.3892/mmr.2012.779PMC349305222307849Baker M.A., Davis S.J., Liu P., Pan X., Williams A.M., Iczkowski K.A., Gallagher S.T., Bishop K., Regner K.R., Liu Y., Liang M. Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease. J. Am. Soc. Nephrol. 2017;28:2985–2992. doi: 10.1681/asn.2016121280.10.1681/asn.2016121280PMC561996328663230Kong J., Li L., Lu Z., Song J., Yan J., Yang J., Gu Z., Da Z. MicroRNA-155 Suppresses Mesangial Cell Proliferation and TGF-β1 Production via Inhibiting CXCR5-ERK Signaling Pathway in. Lupus Nephritis. Inflammation. 2019;42:255–263. doi: 10.1007/s10753-018-0889-1.10.1007/s10753-018-0889-1PMC639459630209639Wu H., Huang T., Ying L., Han C., Li D., Xu Y., Zhang M., Mou S., Dong Z. MiR-155 is Involved in Renal Ischemia-Reperfusion Injury via Direct Targeting of FoxO3a and Regulating Renal Tubular Cell Pyroptosis. Cell. Physiol. Biochem. 2016;40:1692–1705. doi: 10.1159/000453218.10.1159/00045321828006785Pathak S., Grillo A.R., Scarpa M., Brun P., D'Incà R., Nai L., Banerjee A., Cavallo D., Barzon L., Palù G., et al. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp. Mol. Med. 2015;47:e164. doi: 10.1038/emm.2015.21.10.1038/emm.2015.21PMC445499525998827Rao R., Rieder S.A., Nagarkatti P., Nagarkatti M. Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infect. Immun. 2014;82:2971–2979. doi: 10.1128/iai.01666-14.10.1128/iai.01666-14PMC409762224778118Ortiz-Muñoz G., Lopez-Parra V., Lopez-Franco O., Fernandez-Vizarra P., Mallavia B., Flores C., Sanz A., Blanco J., Mezzano S., Ortiz A., et al. Suppressors of cytokine signaling abrogate diabetic nephropathy. J. Am. Soc. Nephrol. 2010;21:763–772.PMC286574220185635Lopez-Sanz L., Bernal S., Recio C., Lazaro I., Oguiza A., Melgar A., Jimenez-Castilla L., Egido J., Gomez-Guerrero C. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition. Lab. Invest. 2018;98:1276–1290. doi: 10.1038/s41374-018-0043-6.10.1038/s41374-018-0043-629540859Shi Y., Du C., Zhang Y., Ren Y., Hao J., Zhao S., Yao F., Duan H. Suppressor of cytokine signaling-1 ameliorates expression of MCP-1 in diabetic nephropathy. Am. J. Nephrol. 2010;31:380–388.20299783Wu X.Y., Yu J., Tian H.M. Effect of SOCS1 on diabetic renal injury through regulating TLR signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019;23:8068–8074. doi: 10.26355/eurrev_201909_19023.10.26355/eurrev_201909_1902331599432Opazo-Ríos L., Sanchez Matus Y., Rodrigues-Díez R.R., Carpio D., Droguett A., Egido J., Gomez-Guerrero C., Mezzano S. Anti-inflammatory, antioxidant and renoprotective effects of SOCS1 mimetic peptide in the BTBR ob/ob mouse model of type 2 diabetes. BMJ Open Diabetes Res. Care. 2020;8:e001242. doi: 10.1136/bmjdrc-2020-001242.10.1136/bmjdrc-2020-001242PMC747802232900697Zhang Y., Xie Y., Zhang L., Zhao H. MicroRNA-155 Participates in Smoke-Inhalation-Induced Acute Lung Injury through Inhibition of SOCS-1. Molecules. 2020;25 doi: 10.3390/molecules25051022.10.3390/molecules25051022PMC717922832106541Wang D., Tang M., Zong P., Liu H., Zhang T., Liu Y., Zhao Y. MiRNA-155 Regulates the Th17/Treg Ratio by Targeting SOCS1 in Severe Acute Pancreatitis. Front. Physiol. 2018;9:686. doi: 10.3389/fphys.2018.00686.10.3389/fphys.2018.00686PMC600274329937734Ye J., Guo R., Shi Y., Qi F., Guo C., Yang L. miR-155 Regulated Inflammation Response by the SOCS1-STAT3-PDCD4 Axis in Atherogenesis. Mediators Inflamm. 2016;2016:8060182. doi: 10.1155/2016/8060182.10.1155/2016/8060182PMC509809327843203Zhao R., Dong R., Yang Y., Wang Y., Ma J., Wang J., Li H., Zheng S. MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia. Pediatr. Res. 2017;82:1007–1016. doi: 10.1038/pr.2017.87.10.1038/pr.2017.8728355202Zhang W., Li X., Tang Y., Chen C., Jing R., Liu T. miR-155-5p Implicates in the Pathogenesis of Renal Fibrosis via Targeting SOCS1 and SOCS6. Oxid. Med. Cell. Longev. 2020;2020:6263921. doi: 10.1155/2020/6263921.10.1155/2020/6263921PMC729834732587662Jefferson J.A., Shankland S.J., Pichler R.H. Proteinuria in diabetic kidney disease: a mechanistic viewpoint. Kidney Int. 2008;74:22–36. doi: 10.1038/ki.2008.128.10.1038/ki.2008.12818418356Thomas H.Y., Ford Versypt A.N. Pathophysiology of mesangial expansion in diabetic nephropathy: mesangial structure, glomerular biomechanics, and biochemical signaling and regulation. J. Biol. Eng. 2022;16:19. doi: 10.1186/s13036-022-00299-4.10.1186/s13036-022-00299-4PMC934707935918708Wang G., Wu B., Zhang B., Wang K., Wang H. LncRNA CTBP1-AS2 alleviates high glucose-induced oxidative stress, ECM accumulation, and inflammation in diabetic nephropathy via miR-155-5p/FOXO1 axis. Biochem. Biophys. Res. Commun. 2020;532:308–314. doi: 10.1016/j.bbrc.2020.08.073.10.1016/j.bbrc.2020.08.07332868076Zhou X., Yan T., Huang C., Xu Z., Wang L., Jiang E., Wang H., Chen Y., Liu K., Shao Z., Shang Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J. Exp. Clin. Cancer Res. 2018;37:242. doi: 10.1186/s13046-018-0911-3.10.1186/s13046-018-0911-3PMC616901330285793Gaudet A.D., Fonken L.K., Gushchina L.V., Aubrecht T.G., Maurya S.K., Periasamy M., Nelson R.J., Popovich P.G. miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity. Sci. Rep. 2016;6:22862. doi: 10.1038/srep22862.10.1038/srep22862PMC478217326953132Zhang D., Cui Y., Li B., Luo X., Li B., Tang Y. miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-β signaling pathway. Mol. Biosyst. 2016;13:215–224. doi: 10.1039/c6mb00649c.10.1039/c6mb00649c27924974Moura J., Sørensen A., Leal E.C., Svendsen R., Carvalho L., Willemoes R.J., Jørgensen P.T., Jenssen H., Wengel J., Dalgaard L.T., Carvalho E. microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Sci. Rep. 2019;9:5836. doi: 10.1038/s41598-019-42309-4.10.1038/s41598-019-42309-4PMC645660630967591Chen X., Zhang X.B., Li D.J., Qi G.N., Dai Y.Q., Gu J., Chen M.Q., Hu S., Liu Z.Y., Yang Z.M. miR-155 facilitates calcium oxalate crystal-induced HK-2 cell injury via targeting PI3K associated autophagy. Exp. Mol. Pathol. 2020;115:104450. doi: 10.1016/j.yexmp.2020.104450.10.1016/j.yexmp.2020.10445032417393Chen S., Shan J., Niu W., Lin F., Liu S., Wu P., Sun L., Lu W., Jiang G. Micro RNA-155 inhibitor as a potential therapeutic strategy for the treatment of acute kidney injury (AKI): a nanomedicine perspective. RSC Adv. 2018;8:15890–15896. doi: 10.1039/c7ra13440a.10.1039/c7ra13440aPMC908026635542211Aggio-Bruce R., Chu-Tan J.A., Wooff Y., Cioanca A.V., Schumann U., Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol. Neurobiol. 2021;58:835–854. doi: 10.1007/s12035-020-02158-z.10.1007/s12035-020-02158-zPMC784356133037565Valipour A., Jäger M., Wu P., Schmitt J., Bunch C., Weberschock T. Interventions for mycosis fungoides. Cochrane Database Syst. Rev. 2020;7:Cd008946. doi: 10.1002/14651858.CD008946.pub3.10.1002/14651858.CD008946.pub3PMC738925832632956Recio C., Oguiza A., Mallavia B., Lazaro I., Ortiz-Muñoz G., Lopez-Franco O., Egido J., Gomez-Guerrero C. Gene delivery of suppressors of cytokine signaling (SOCS) inhibits inflammation and atherosclerosis development in mice. Basic Res. Cardiol. 2015;110:8.25604439Lazaro I., Oguiza A., Recio C., Mallavia B., Madrigal-Matute J., Blanco J., Egido J., Martin-Ventura J.L., Gomez-Guerrero C. Targeting HSP90 Ameliorates Nephropathy and Atherosclerosis Through Suppression of NF-kappaB and STAT Signaling Pathways in Diabetic Mice. Diabetes. 2015;64:3600–3613.26116697López-Franco O., Suzuki Y., Sanjuán G., Blanco J., Hernández-Vargas P., Yo Y., Kopp J., Egido J., Gómez-Guerrero C. Nuclear factor-kappa B inhibitors as potential novel anti-inflammatory agents for the treatment of immune glomerulonephritis. Am. J. Pathol. 2002;161:1497–1505. doi: 10.1016/s0002-9440(10)64425-2.10.1016/s0002-9440(10)64425-2PMC186730812368222