Background: The development of new therapies for malignant gliomas has been stagnant for decades. Through the promising outcomes in clinical trials of oncolytic virotherapy, there is now a glimmer of hope in addressing this situation. To further enhance the antitumor immune response of oncolytic viruses, we have equipped a modified oncolytic adenovirus (oAds) with a recombinant interferon-like gene (YSCH-01) and conducted a comprehensive evaluation of the safety and efficacy of this modification compared to existing treatments.

Methods: To assess the safety of YSCH-01, we administered the oAds intracranially to Syrian hamsters, which are susceptible to adenovirus. The efficacy of YSCH-01 in targeting glioma was evaluated through in vitro and in vivo experiments utilizing various human glioma cell lines. Furthermore, we employed a patient-derived xenograft model of recurrent glioblastoma to test the effectiveness of YSCH-01 against temozolomide.

Results: By modifying the E1A and adding survivin promoter, the oAds have demonstrated remarkable safety and an impressive ability to selectively target tumor cells. In animal models, YSCH-01 exhibited potent therapeutic efficacy, particularly in terms of its distant effects. Additionally, YSCH-01 remains effective in inhibiting the recurrent GBM patient-derived xenograft model.

Conclusions: Our initial findings confirm that a double-modified oncolytic adenovirus armed with a recombinant interferon-like gene is both safe and effective in the treatment of malignant glioma. Furthermore, when utilized in combination with a targeted therapy gene strategy, these oAds exhibit a more profound effect in tumor therapy and an enhanced ability to inhibit tumor growth at remote sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572777PMC
http://dx.doi.org/10.1093/noajnl/vdad117DOI Listing

Publication Analysis

Top Keywords

oncolytic adenovirus
12
recombinant interferon-like
12
interferon-like gene
12
double-modified oncolytic
8
adenovirus armed
8
armed recombinant
8
malignant glioma
8
patient-derived xenograft
8
ysch-01
6
adenovirus
4

Similar Publications

Purpose: This systematic review aimed to collate and synthesize the available literature on the abscopal effect in Glioblastoma multiforme (GBM) neoplasms, focusing on the reported biochemical mechanisms driving the abscopal effect.

Methods: A systematic search was conducted in PubMed, Cochrane Database of Systematic Reviews, and Epistemonikos from inception to May 1, 2023. Studies exploring the abscopal effect in GBM were included.

View Article and Find Full Text PDF

In situ blockade of TNF-TNFR2 axis via oncolytic adenovirus improves antitumor efficacy in solid tumors.

Mol Ther

December 2024

State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China. Electronic address:

Tumor necrosis factor (TNF) has been recognized as an immune activation factor in tumor immunotherapy. Our study demonstrated that TNF blockade markedly enhanced the antitumor efficacy of oncolytic adenovirus (AdV) therapy. To minimize systemic side effects, we engineered a recombinant oncolytic AdV encoding a TNF inhibitor (AdV-TNFi) to confine TNF blockade within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Adenovirus (AdV) infection has been rarely documented in cats and other felids. Partial sequences of the hexon and fiber genes of a Hungarian feline adenovirus isolate (FeAdV isolate) showed a close relationship to human AdV (HAdV) type C1. Further molecular and biological characterization is reported here.

View Article and Find Full Text PDF

The adenoviral E4orf4 protein: A multifunctional protein serving as a guide for treating cancer, a multifactorial disease.

Tumour Virus Res

December 2024

Dept. of Molecular Microbiology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel. Electronic address:

Viruses exploit several cellular pathways to support their replication, and many of these virus-targeted pathways are also important for cancer growth. Consequently, studying virus-host interactions offers valuable insights into tumorigenesis and can suggest the development of novel anti-cancer therapies, with oncolytic viruses being one well-known example. The adenovirus E4orf4 protein, which disrupts several host regulatory pathways to facilitate viral infection, also functions as a potent anti-cancer agent when expressed independently.

View Article and Find Full Text PDF

Background: Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!