Purpose: Tumor capsule is an independent prognostic factor for patients with hepatocellular carcinoma (HCC) and used increasingly to guide clinical decision-making. Considering the genetic complexity for capsule formation and its potential association with hypoxia, the significance of the polymorphisms of hypoxia-related genes in capsule formation and HCC prognosis remains to be elucidated.

Patients And Methods: Peripheral blood samples from HCC patients were collected in this study. Single nucleotide polymorphism (SNP) genotyping was conducted by the iPLEX chemistry on a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (Sequenom, Inc.). The demographic and clinical data for the patients were obtained through medical chart review and/or consultation with the treating physicians. SPSS 25.0, R 4.1.1, and PLINK toolset were used to perform statistical analysis.

Results: A total of 183 patients were enrolled, including 88 patients assigned to the capsule group and 95 to the non-capsule group. SLC2A1 rs841858 T allele, SLC2A1 rs2297977 T allele, STAT1 rs1547550 C allele, and STAT1 rs34997637 G allele were associated with significantly increased risk of capsule formation. The genotypes of SLC2A1 rs841858, SLC2A1 rs2297977, STAT1 rs34997637, and STAT1 rs1914408 were significantly associated with the formation of HCC capsule. The polymorphisms of STAT1 rs2066802, STAT1 rs12693591, and HIF1A rs2057482 showed close relationship with the prognosis of HCC patients in the capsule group, while the genotype distributions of CTNNB1 rs4135385, IFNG rs1861494, and SERPINE1 rs2227631 were closely related to the survival of patients in the non-capsule group. Further haplotype analysis suggested that SLC2A1 block 1 and STAT1 block 2 were related to the susceptibility of HCC capsule.

Conclusion: The polymorphisms of the hypoxia-related genes (HIF1A, SERPINE1, IFNG, STAT1, CTNNB1, and SLC2A1) were correlated with the formation of HCC capsule. Several SNPs in these genes also showed association with HCC prognosis except SLC2A1. Further functional studies are warranted to explore the underlying mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576505PMC
http://dx.doi.org/10.2147/JHC.S417830DOI Listing

Publication Analysis

Top Keywords

capsule formation
16
polymorphisms hypoxia-related
12
hypoxia-related genes
12
formation hcc
12
capsule
9
single nucleotide
8
genes capsule
8
hepatocellular carcinoma
8
hcc
8
hcc prognosis
8

Similar Publications

Background: Inhibition of IL-4/IL-13 driven inflammation by dupilumab has shown significant clinical benefits in treatment of atopic dermatitis (AD).

Objective: To assess longitudinal protein and metabolite composition in AD skin during dupilumab treatment.

Methods: Skin tape strip (STS) were collected from lesional/non-lesional skin of 20 AD patients during 16-week dupilumab treatment and from 20 healthy volunteers (HV) followed for 16-weeks.

View Article and Find Full Text PDF

Exploring the therapeutic potential of Abelmoschi Corolla in psoriasis: Mechanisms of action and inflammatory pathway disruption.

Phytomedicine

January 2025

Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China. Electronic address:

Background: Psoriasis is a prevalent chronic inflammatory skin condition for which existing treatments often fall short of fully addressing patient needs. Abelmoschi Corolla (AC), a traditional Chinese medicine, and its ethanol extract, huangkui capsule, are well established for the treatment of chronic kidney diseases. The therapeutic mechanisms of AC include anti-inflammatory effects and immune modulation, which align with psoriasis treatment strategies.

View Article and Find Full Text PDF

Integrated metabolomics and mass spectrometry imaging analysis reveal the efficacy and mechanism of Huangkui capsule on type 2 diabetic nephropathy.

Phytomedicine

January 2025

State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; Department of Nephrology, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China. Electronic address:

Background: Huangkui capsule (HKC), a Chinese patent medicine, is clinically used for treating diabetic nephropathy. However, the core disease-specific biomarkers and targets of type 2 diabetic nephropathy (T2DN) and the therapeutic mechanism of HKC are not fully elucidated.

Purpose: This study aimed to investigate the therapeutic effects and underlying molecular mechanisms of HKC for T2DN.

View Article and Find Full Text PDF

Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques.

Pharmaceutics

January 2025

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.

View Article and Find Full Text PDF

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!