Herein we report a copper-catalyzed synthesis of imidazolidine by employing the reaction of aziridine with imine. The reaction smoothly provided a diverse range of 2-substituted imidazolidines with high compatibility with various functional groups. Moreover, during our investigation, we discovered that isocyanate also reacted with aziridine to yield substituted imidazolidinones efficiently. The versatility of these reactions was further demonstrated by their application in the synthesis of hybrid molecules derived from two pharmaceutical compounds. This approach opens new possibilities for the discovery of novel classes of bioactive molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570437PMC
http://dx.doi.org/10.3389/fchem.2023.1272034DOI Listing

Publication Analysis

Top Keywords

reaction aziridine
8
copper-catalyzed reaction
4
aziridine synthesis
4
synthesis substituted
4
substituted imidazolidine
4
imidazolidine imidazolidinone
4
imidazolidinone report
4
report copper-catalyzed
4
copper-catalyzed synthesis
4
synthesis imidazolidine
4

Similar Publications

[Progress in applications of ambient ionization mass spectrometry for lipids identification].

Se Pu

January 2025

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Lipids are indispensable components of living organisms and play pivotal roles in cell-membrane fluidity, energy provision, and neurotransmitter transmission and transport. Lipids can act as potential biomarkers of diseases given their abilities to indicate cell-growth status. For example, the lipid-metabolism processes of cancer cells are distinct from those of normal cells owing to their rapid proliferation and adaptation to ever-changing biological environments.

View Article and Find Full Text PDF

A Mn(salen)-Based Artificial Metalloenzyme for Nitrene and Oxene Transfer Catalysis.

Chembiochem

December 2024

Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore, 138665, Singapore.

The development of artificial metalloenzymes (ArMs) offers a potent approach to incorporate non-natural chemical reactions into biocatalysis. Here we report the assembly of Mn(salen)-based ArMs by embedding biotinylated Mn(salen) complexes into streptavidin (Sav) variants. Using commercially available nitrene and oxo transfer reagents, these biohybrid catalysts catalyzed the aziridination of alkenes and oxidation of benzylic C-H bonds with up to 19 and 146 turnover numbers.

View Article and Find Full Text PDF

Alginate biopolymer is widely employed in many industrial fields thanks to its pleasing features of biodegradability, biocompatibility, low toxicity, and relatively low cost. The gelling process of alginate with divalent cations is fairly simple and thus it is used as a versatile biomaterial to tailor the desired mechanical and moisture properties. This study focused on developing new gel formulations to enhance the properties of calcium-alginate hydrogel (CA).

View Article and Find Full Text PDF

A series of sulfonamido-substituted oxime-ethers have been synthesized by the reaction of donor-acceptor aziridines with aldo- and keto-oximes through C-C bond cleavage. Nucleophilic attack by an oxime hydroxyl group on the -generated azomethine ylide rather than the routine cycloaddition reaction draws the novelty of the developed methodology. Selective protection of the oxime hydroxyl group is observed in the presence of phenolic -OH, which made the protocol enriched.

View Article and Find Full Text PDF

A (3+3)-cycloaddition to afford 2-azabiyclo[3.1.1]heptanes was realized by reacting highly strained aryl bicyclo[1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!