Kinetic gas hydrate inhibitors (KHIs) are often used in combination with film-forming corrosion inhibitors (CIs) in oilfield production flow lines. However, CIs can be antagonistic to KHI performance. In this study, maleic anhydride---isopropylmethacrylamide copolymer (MA:NIPMAM) and its derivatives were successfully synthesized and tested for gas hydrate and corrosion inhibition. KHI slow constant cooling (1 °C/h) screening tests in high-pressure rocking cells with synthetic natural gas and CO corrosion bubble tests in brine were performed in this study. The results revealed that underivatized MA:NIPMAM in water (as maleic acid:NIPMAM copolymer) showed poor KHI performance, probably due to internal hydrogen bonding. However, derivatization of MA:NIPMAM with 3-(dibutylamino)-1-propylamine (DBAPA) to give MA:NIPMAM-DBAPA gave excellent gas hydrate inhibition performance but only weak corrosion inhibition performance. Unlike some KHI polymers, MA:NIPMAM-DBAPA was compatible with a classic fatty acid imidazoline CI, such that neither the KHI polymer performance nor the corrosion inhibition of the imidazoline was affected. Furthermore, excellent dual gas hydrate and corrosion inhibition was also achieved in blends of MA:NIPMAM-DBAPA with small thiol-based molecules. In particular, the addition of butyl thioglycolate not only gave excellent corrosion inhibition efficiency, better than adding the fatty imidazoline, but also enhanced the overall gas hydrate inhibition performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568719 | PMC |
http://dx.doi.org/10.1021/acsomega.3c05828 | DOI Listing |
J Environ Manage
January 2025
School of Business, Xi'an University of Finance and Economics, Xi'an, 710100, China.
The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.
View Article and Find Full Text PDFMolecules
January 2025
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China.
The hydrate blockage avoidance performance of two anti-agglomerants (coconut amidopropyl dimethylamine, propylene bis (octadecylamidopropyl dimethylammonium chloride)) and their mixtures with polyvinylpyrrolidone (PVP) was tested in a high-pressure rocking cell apparatus. The effect of gas-liquid ratio, water content and PVP concentration were analyzed. A method for evaluating the kinetic inhibiting and anti-agglomerating performance of hydrate inhibitors was established.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.
To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Jinnan, Tianjin 300354, China.
For the exploration and development of oil and gas reservoirs in shallow, cold regions and deep oceans, oil well cement (OWC) pastes face the challenge of slow cement hydration reactions and the low early-strength development of cement stone at low temperatures, which can cause the risk of fluid channeling and the defective isolation of the sealing section during the cementing construction process. To address the above challenges, a nanoscale hydrated calcium silicate (C-S-H) crystal nucleus, DRA-1L, was synthesized. Its application performance and action mechanism were studied.
View Article and Find Full Text PDFMicroorganisms
December 2024
Sanya Institute of South China Sea Geology, Guangzhou Marine Geological Survey, China Geological Survey, Sanya 572025, China.
In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!