Influence of maternal oral microbiome on newborn oral microbiome in healthy pregnancies.

Ital J Pediatr

Operative Unit of Neonatology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa, 16132, Italy.

Published: October 2023

AI Article Synopsis

  • Periodontal disease in mothers can affect pregnancy outcomes and transmit bacteria to newborns.
  • Salivary samples from 60 healthy, full-term newborns and their mothers were analyzed using Real Time PCR to identify specific bacteria associated with periodontal disease.
  • The study found that while the oral microbiome was primarily composed of non-pathogenic bacteria in both mothers and newborns, there was little correlation in the microbiological profiles between the two, indicating that maternal oral health may have a minimal impact on the neonatal microbiome.

Article Abstract

Background: Periodontal disease and its bacteria can be responsible for pregnancy complications and transmission of periodontal bacteria from mother to newborn.

Methods: A salivary swab to 60 healthy, full-term newborns and their mothers was taken immediately after birth. The test was performed with Real Time PCR method to evaluate the expression of the gene through DNA amplification. The species considered were: Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum ssp.

Results: The newborn oral microbiome was composed primarily by saprophytes (98.38 + 4.88%), just like the mothers (98.8 + 3.69%). There was a statistically significant difference of the total microbiological density in newborns and mothers (p = 0.0001). Maternal and neonatal oral microbiome had a correlated total microbiological density only in 33.3% (N = 20/60) of cases. The analysis of the oral microbiome showed a pathological composition only in 12/60 babies (20%). The most frequent detected specie in newborns was Fusobacterium nucleatum (9/12 babies, 75%), as well as for the mothers (53.3%). However, the pathogen was present both in baby and his mother only in 3 dyads. Porphyromonas gingivalis showed the highest association mother-baby (4/12 dyads, 33%). Porphyromonas gingivalis was the pathogen with the highest bacterial load in the 12 mothers. We found a statistically significant difference in the total load of Porphyromonas gingivalis in mothers and babies (p = 0.02).

Conclusions: There was a statistically significant difference in the richness of the microbiome from newborns and mothers. Even comparing the microbiological density in the oral cavity of the individual mother-child pairs, we did not find a significant concordance. These results seem to suggest a low influence of maternal oral microbiome on the richness of the oral neonatal one. We didn't find mother-child concordance (p = 0.0001) in the presence of pathogenic periodontal micro-organisms. Fusobacterium nucleatum was the most frequent specie detected. Porphyromonas gingivalis instead was the bacteria with the higher possibility of transmission. In conclusion in our study maternal oral health doesn't affect healthy, full-term newborns' oral microbiome. Further studies are needed to understand the maternal influence on newborn's oral microbiome and its effects on babies long-term health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577932PMC
http://dx.doi.org/10.1186/s13052-023-01520-wDOI Listing

Publication Analysis

Top Keywords

oral microbiome
32
porphyromonas gingivalis
20
maternal oral
12
newborns mothers
12
fusobacterium nucleatum
12
statistically difference
12
microbiological density
12
oral
11
microbiome
9
influence maternal
8

Similar Publications

Editorial: Insights in systems microbiology: 2022/2023.

Front Microbiol

January 2025

Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.

View Article and Find Full Text PDF

The pathophysiological mechanism of abdominal aortic aneurysm (AAA) remains unclear. We previously reported that levels were reduced in the feces of patients with AAA by 16S ribosomal ribonucleic acid (RNA) gene sequencing. In this study, we increased the number of cases and conducted metagenomic analyses to examine bacterial genes associated with the pathophysiology of AAA.

View Article and Find Full Text PDF

The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.

View Article and Find Full Text PDF

Apolipoprotein () genotype and nitric oxide (NO) deficiency are risk factors for age-associated cognitive decline. The oral microbiome plays a critical role in maintaining NO bioavailability during aging. The aim of this study was to assess interactions between the oral microbiome, NO biomarkers, and cognitive function in 60 participants with mild cognitive impairment (MCI) and 60 healthy controls using weighted gene co-occurrence network analysis and to compare the oral microbiomes between carriers and noncarriers in a subgroup of 35 MCI participants.

View Article and Find Full Text PDF

Background: This cross-sectional study aimed to compare the composition of the submucosal microbiome of peri-implantitis with paired and unpaired healthy implant samples.

Methods: We evaluated submucosal plaque samples obtained in 39 cases, including 13 cases of peri-implantitis, 13 cases involving healthy implants from the same patient (paired samples), and 13 cases involving healthy implants from different individuals (unpaired samples). The patients were evaluated using next-generation genomic sequencing (Illumina) based on 16S rRNA gene amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!