Cadaverine (Cad), which has an independent synthesis pathway compared to other polyamine (PA) types, contributes to the health of plants by regulating plant growth and development, abiotic stress tolerance and antioxidant defense mechanisms. In this work, experiments were carried out to understand the effects of exogenous Cad (10 µM) application under drought stress (%22 PEG 6000) and without stress on cell cycle, total protein content, endogenous PA levels, and biochemical enzyme activities in barley (Hordeum vulgare cv. Burakbey) considering the potential of Cad to stimulate the drought-related tolerance system. Cad application in a stress-free environment showed an effect almost like low-impact drought stress, causing changes in all parameters examined compared to samples grown in distilled water environment (Control). The results clearly show that Cad applied against the negative effects of drought stress on all parameters creates a drought resistance mechanism of the plant. Accordingly, Cad applied together with drought stress increased the density of cells in the cell cycle (G1-S and S-G2 phases) and the amount of endogenous (spermidine 10% and spermine 40%) PAs. In addition, while superoxide dismutase (SOD) (5%), (CAT) (55%) and ascorbate peroxidase (APX) (18%) enzyme levels increased, a stress response mechanism occurred due to the decrease in total protein content (20%) and malondialdehyde (MDA) (80%). As a result, exogenous application of 10 µM Cad showed that it reduced the negative effects of drought stress on endogenous PA amounts, cell division and biochemical activities in barley.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577135PMC
http://dx.doi.org/10.1038/s41598-023-44795-zDOI Listing

Publication Analysis

Top Keywords

drought stress
24
cell cycle
12
stress
9
biochemical enzyme
8
total protein
8
protein content
8
activities barley
8
cad applied
8
negative effects
8
effects drought
8

Similar Publications

Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.

View Article and Find Full Text PDF

The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses.

Plant Physiol Biochem

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:

Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.

View Article and Find Full Text PDF

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

Plant Physiol Biochem

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!