During the operation of the landfills, leachate should be managed with caution to avoid possible negative environmental impacts. Considering this, the present study aims to evaluate the relationship between different variables in the leachate composition and elucidate the transformation processes through which this effluent passes during the landfill's period of operation. The study was conducted with eight sanitary landfills from the state of Minas Gerais, in southeastern Brazil, and used descriptive statistical analysis, principal component analysis (PCA), correlation analysis, and calculation of the leachate pollution index (LPI). The biochemical oxygen demand (BOD5)/chemical oxygen demand (COD) ratio was between 0.20 and 0.60. We also observed a significant correlation of 0.45 between Cl and N-NH, which reflects the biological degradation processes that contribute to the presence of both variables. The PCA showed that inorganic variables and organic matter dominated the first component, with coefficients above 0.65, indicating the importance of those variables in determining the general data variability. The LPI values were between 15.26 and 25.97, with BOD, COD, and N-NH having sub-indexes above 35, being the main variables that increase the pollution potential of the leachate. On the other hand, trace metals present sub-indexes below 7 due to precipitation caused by increased pH and the characteristics of the waste discarded in landfills. The study provides essential information regarding the landfill leachate characteristics and its variation over time, which can contribute to the definition of treatment technologies for this affluent in different scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-023-11959-3 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland.
The growing demand for alkali metals (AMs), such as lithium, cesium, and rubidium, related to their wide application across various industries (e.g., electronics, medicine, aerospace, etc.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Building Construction, Technical Upper School of Architecture, University of Granada, Campo del Principe, E18071 Granada, Spain.
Modern construction is largely dependent on steel and concrete, with natural materials such as earth being significantly underutilised. Despite its sustainability and accessibility, earth is not being used to its full potential in developed countries. This study explores innovative building materials using Alhambra Formation soil (Granada, Spain) reinforced with difficult-to-recycle agricultural waste: polypropylene fibres contaminated with organic matter and leachates.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Ecology and Environment, Anhui Normal University, Wuhu Anhui Province 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Wuhu 241000, Anhui, China. Electronic address:
Tire wear particles (TWP) are one of the main sources of microplastic (MP) pollution in the marine environment, causing adverse effects on marine life and attracting increasing attention. This study aimed to investigate the chemical composition of TWP (particles and leachate) and their toxic effects on Brachionus plicatilis. The results showed that Zn and acenaphthene were the most frequently detected compounds in the three TWP treatments.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India. Electronic address:
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!