Incorporating ecology into gene drive modelling.

Ecol Lett

Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.

Published: September 2023

AI Article Synopsis

  • Gene drive technology could help combat diseases, pests, and invasive species by spreading engineered alleles in wild populations.
  • Researchers have primarily tested these drives in labs and through models, highlighting the need for real-world evaluation.
  • It's crucial to integrate ecological factors into gene drive models to understand the potential effects and risks of these technologies before field experiments begin.

Article Abstract

Gene drive technology, in which fast-spreading engineered drive alleles are introduced into wild populations, represents a promising new tool in the fight against vector-borne diseases, agricultural pests and invasive species. Due to the risks involved, gene drives have so far only been tested in laboratory settings while their population-level behaviour is mainly studied using mathematical and computational models. The spread of a gene drive is a rapid evolutionary process that occurs over timescales similar to many ecological processes. This can potentially generate strong eco-evolutionary feedback that could profoundly affect the dynamics and outcome of a gene drive release. We, therefore, argue for the importance of incorporating ecological features into gene drive models. We describe the key ecological features that could affect gene drive behaviour, such as population structure, life-history, environmental variation and mode of selection. We review previous gene drive modelling efforts and identify areas where further research is needed. As gene drive technology approaches the level of field experimentation, it is crucial to evaluate gene drive dynamics, potential outcomes, and risks realistically by including ecological processes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.14194DOI Listing

Publication Analysis

Top Keywords

gene drive
36
gene
10
drive
10
drive modelling
8
drive technology
8
ecological processes
8
ecological features
8
incorporating ecology
4
ecology gene
4
modelling gene
4

Similar Publications

Identification of U6 Promoter and Establishment of Gene-Editing System in (Lamb.) Carr.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.

This study aimed to establish a CRISPR/Cas9 gene-editing system for (Lamb.) Carr. (Japanese larch).

View Article and Find Full Text PDF

Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a mutation.

View Article and Find Full Text PDF

Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.

View Article and Find Full Text PDF

Esophageal cancer (EC) is one of the most common malignancies worldwide with the character of poor prognosis and high mortality. Despite significant advancements have been achieved in elucidating the molecular mechanisms of EC, for example, in the discovery of new biomarkers and metabolic pathways, effective treatment options for patients with advanced EC are still limited. Metabolic heterogeneity in EC is a critical factor contributing to poor clinical outcomes.

View Article and Find Full Text PDF

Gut microbes of the cecum versus the colon drive more severe lethality and multi-organ damage.

Int Immunopharmacol

January 2025

Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China. Electronic address:

Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!