The direct C-H functionalization of 1,2-benzazaborines, especially asymmetric version, remains a great challenge. Here we report a palladium-catalyzed enantioselective C-H olefination and allylation reactions of 1,2-benzazaborines. This asymmetric approach is a kinetic resolution (KR), providing various C-B axially chiral 2-aryl-1,2-benzazaborines and 3-substituted 2-aryl-1,2-benzazaborines in generally high yields with excellent enantioselectivities (selectivity (S) factor up to 354). The synthetic potential of this reaction is showcased by late-stage modification of complex molecules, scale-up reaction, and applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202313388 | DOI Listing |
Chemistry
January 2025
Beijing Normal University, College of Chemistry, Xiejiekou NO.19, 100875, Beijing, CHINA.
Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
Considering the unique electronic properties of the CF and the CN groups, the CFCN group has significant potential in drug and agrochemical development, as well as material sciences. However, incorporating a CFCN group remains a considerable challenge. In this work, we disclose a use of bromodifluoroacetonitrile (BrCFCN), a cost-effective and readily available reagent, as a radical source for cyanodifluoromethylation of alkyl alkenes, aryl alkenes, alkynes, and (hetero)arenes under photocatalytic conditions.
View Article and Find Full Text PDFJ Org Chem
January 2025
Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
Direct functionalization of native (N-H) indoles via C-H activation remains a challenge. Herein, we report a salicylaldehyde-promoted cobalt-catalyzed selective C2-H Heck reaction of native (N-H) indoles with both active and unactivated olefins in the presence of free N-H bonds. A series of structurally diverse C2-alkenylated native (N-H) indoles including natural product and drug derivatives were prepared directly and effectively without additional preprotection and deprotection procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!