This study aimed to investigate how the types and order of modifications influence the structure and physicochemical characteristics of modified porous starch. The work focuses on the encapsulation of essential oil in hydrophobic microcapsules embedded in sodium alginate hydrogels. FTIR spectra indicated successful esterification of starch with OSA. 1047:1022 cm and 1022:995 cm band ratios of FTIR spectra revealed increased crystallinity due to enzymatic modification, supported by XRD patterns. Porous-OSA (PO) starch had 1.5 times higher degree of substitution (DS) than OSA-porous (OP) starch, confirmed by the intense peak at 0.85 ppm in H NMR spectra. SEM images displayed larger particles and smaller pore diameter in OP compared to PO and porous starch, indicating amylolytic enzyme inhibition by OSA. Loading efficiency (LE) showed no significant difference between OP and PO microcapsules (≈70 %), both significantly higher other starch microcapsules. OP and PO microcapsules exhibited sustained release, with enhanced antibacterial activity. Alginate hydrogels preserved about 60 % antioxidant and 90 % antibacterial activities of SEO against 2 h of UV radiation. These findings suggest that the order of modification could not affect the functional properties of final microcapsules. Additionally, the importance of alginate hydrogels as the protective and second wall material was disclosed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121331DOI Listing

Publication Analysis

Top Keywords

alginate hydrogels
12
essential oil
8
porous starch
8
ftir spectra
8
starch
7
microcapsules
5
fabrication study
4
study dually
4
dually modified
4
modified starch
4

Similar Publications

Objectives: For designing a suitable hydrogel, two crosslinked Alginate/ Carboxymethyl cellulose (Alg/CMC) hydrogel, using calcium chloride (Ca) and glutaraldehyde (GA) as crosslinking agents were synthesized and compared.

Materials And Methods: All samples were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Blood compatibility (BC), Blood clotting index (BCI), weight loss (WL), water absorption (WA), pH, and Electrochemical Impedance Spectroscopy (EIS). Cell viability and cell migration were investigated using the MTT assay and the wound scratch test, respectively.

View Article and Find Full Text PDF

A soybean protein isolate (SPI)-based hydrogel with controllable properties was prepared under mild conditions using a simple mixing method with dialdehyde sodium alginate (DSA) as an eco-friendly macromolecular crosslinker. DSA was successfully synthesized via periodate oxidation. Analysis of the structure of the SPI/DSA hydrogel indicated that a 3D network was formed between SPI and DSA through dynamic imine and hydrogen bonds.

View Article and Find Full Text PDF

Magnesium ions regulate the Warburg effect to promote the differentiation of enteric neural crest cells into neurons.

Stem Cell Res Ther

January 2025

Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.

Background: Understanding how enteric neural crest cells (ENCCs) differentiate into neurons is crucial for neurogenesis therapy and gastrointestinal disease research. This study explores how magnesium ions regulate the glycolytic pathway to enhance ENCCs differentiation into neurons.

Materials And Methods: We used polymerase chain reaction, western blot, immunofluorescence, and multielectrode array techniques to assess magnesium ions' impact on ENCCs differentiation.

View Article and Find Full Text PDF

Viscoelastic hydrogel combined with dynamic compression promotes osteogenic differentiation of bone marrow mesenchymal stem cells and bone repair in rats.

Regen Biomater

November 2024

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.

A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous.

View Article and Find Full Text PDF

Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

Carbohydr Polym

March 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!