Background: Breast cancer (BC) is a prevalent malignancy affecting women, characterized by a substantial occurrence rate. Squalene epoxidase (SQLE) is a crucial regulator of ferroptosis and has been associated with promoting cell growth and invasion in different types of human cancers. This study aimed to investigate the functional significance of SQLE in BC and elucidate the underlying molecular mechanisms involved.
Methods: SQLE expression levels in BC tissues were evaluated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. Cell viability, invasion, migration, and cell cycle distribution were assessed using a combination of assays, including the Cell Counting Kit-8, EdU, colony formation, Transwell, and wound healing assays and flow cytometry analysis. Measurement of intracellular reactive oxygen species (ROS), malondialdehyde assay, and glutathione assay were utilized to investigate ferroptosis. Furthermore, co-immunoprecipitation and immunofluorescence assays were conducted to explore the correlation between SQLE and CCNB1. The in vivo tumor growth was evaluated by conducting a xenograft tumorigenicity assay to investigate the impact of SQLE.
Results: SQLE expression was significantly increased in BC, and higher SQLE expression levels were significantly associated with an unfavorable prognosis. In vitro functional assays revealed that the overexpression of SQLE markedly enhanced the proliferation, migration, and invasion capacities of BC cells. Furthermore, SQLE overexpression facilitated tumor growth in nude mice. Mechanistically, SQLE alleviated the ubiquitination modification of CCNB1, leading to enhanced stability of the CCNB1 protein and decreased intracellular ROS levels. Ultimately, this inhibited ferroptosis and facilitated the progression of BC. Our findings have provided insights into a crucial pathway by which elevated SQLE expression confers protection to BC cells against ferroptosis, thus promoting cancer progression. SQLE may serve as a novel oncological marker and a potential therapeutic target for BC progression.
Conclusions: In conclusion, this study provides evidence that SQLE plays a regulatory role in BC progression by modulating CCNB1 and ferroptosis. These findings offer valuable insights into the role of SQLE in the pathogenesis of BC and demonstrate its potential as a therapeutic target for treating BC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2023.113805 | DOI Listing |
Exp Cell Res
December 2024
NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Hospital of Harbin Medical University, Harbin, 150001, China; Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin, China. Electronic address:
Lactylation is an emerging pathogenesis of hepatocellular carcinoma (HCC). However, the underlying mechanisms and biological significance remain poorly understood. The Carbonic anhydrase III (CA3) gene, previously defined as a binding protein of SQLE and involved in the NAFLD disease, has now been identified as a novel tumor suppressor in HCC.
View Article and Find Full Text PDFMol Metab
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. Electronic address:
By analyzing RNA datasets from rhabdomyosarcoma (RMS), a soft tissue tumor with a prevalence in young people, we found upregulation of sterol regulatory element-binding protein 2 (SREBP2) and mevalonate pathway (MVP) genes, including 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), farnesyl-diphosphate synthase (FDPS), squalene epoxidase (SQLE), which correlated with worse overall patient survival and predicted statin sensitivity. In human RD and RH30 lines, treatment with 0.01-1 μM doses of fatostatin (SREBP2 inhibitor), lovastatin and simvastatin (HMGCR inhibitors), and zoledronic acid (FDPS inhibitor) impaired cell growth and migration, which were conversely stimulated by 50-100 μM cholesterol (CHO) supplementation.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Oncology, The Second Xiangya Hospital, Central South University, No. 72 Xiangya Road, Changsha, 410000, Hunan, China.
Messenger RNA (mRNA)-based vaccines present a promising avenue for cancer immunotherapy; however, their application in cervical cancer remains unexplored. This study investigated the interplay between the regulated cell death pathways of cuproptosis and ferroptosis to advance the development of mRNA vaccines for cervical cancer. We identified key cuproptosis-related and ferroptosis-related genes (CFRGs) from public mRNA profiles and determined their prognostic significance, mutation frequencies, and effect on the immune landscape.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
Background: The ovary is a central organ in the reproductive system that produces oocytes and synthesizes and secretes steroid hormones. Healthy development and regular cyclical change in the ovary is crucial for regulating reproductive processes. However, the key genes and metabolites that regulate ovarian development and pregnancy have not been fully elucidated.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, Guangdong, China.
Background: Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options and poor prognosis, underscoring the need for new therapeutic agents.
Methods: A library of 640 natural products was screened for anti-proliferative activity in SCLC cells. The effects of Cepharanthine (CE) on SCLC cells were assessed and .
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!