Macrophage phenotype transitions in a stochastic gene-regulatory network model.

J Theor Biol

Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway. Electronic address:

Published: November 2023

Polarization is the process by which a macrophage cell commits to a phenotype based on external signal stimulation. To know how this process is affected by random fluctuations and events within a cell is of utmost importance to better understand the underlying dynamics and predict possible phenotype transitions. For this purpose, we develop a stochastic modeling approach for the macrophage polarization process. We classify phenotype states using the Robust Perron Cluster Analysis and quantify transition pathways and probabilities by applying Transition Path Theory. Depending on the model parameters, we identify four bistable and one tristable phenotype configuration. We find that bistable transitions are fast but their states less robust. In contrast, phenotype transitions in the tristable situation have a comparatively long time duration, which reflects the robustness of the states. The results indicate parallels in the overall transition behavior of macrophage cells with other heterogeneous and plastic cell types, such as cancer cells. Our approach allows for a probabilistic interpretation of macrophage phenotype transitions and biological inference on phenotype robustness. In general, the methodology can easily be adapted to other systems where random state switches are known to occur.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2023.111634DOI Listing

Publication Analysis

Top Keywords

phenotype transitions
16
macrophage phenotype
8
polarization process
8
states robust
8
phenotype
7
macrophage
5
transitions
5
transitions stochastic
4
stochastic gene-regulatory
4
gene-regulatory network
4

Similar Publications

Mitochondrial form and function are intricately linked through dynamic processes of fusion and fission, and disruptions in these processes are key drivers of neurodegenerative diseases, like Alzheimer's. The inability of mitochondria to transition between their dynamic forms is a critical factor in the development of pathological states. In this paper, we focus on the importance of different types of mitochondrial phenotypes in nervous tissue, discussing how mitochondria in Alzheimer's disease are "stuck" in certain patterns and how this pattern maintains itself.

View Article and Find Full Text PDF

Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.

View Article and Find Full Text PDF

Impact of interaction between individual genomes and preeclampsia on the severity of autism spectrum disorder symptoms.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008.

Objectives: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Prior research suggests that genetic susceptibility and environmental exposures, such as maternal preeclampsia (PE) during pregnancy, play key roles in ASD pathogenesis. However, the specific effects of the interaction between genetic and environmental factors on ASD phenotype severity remain unclear.

View Article and Find Full Text PDF

Mitochondria and astrocyte reactivity: Key mechanism behind neuronal injury.

Neuroscience

January 2025

Biochemistry Department and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.

In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system.

View Article and Find Full Text PDF

Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models.

Biomed Pharmacother

January 2025

Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:

This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!