Purpose: To characterize focal biomechanical alterations in subclinical keratoconus (SKC) using motion-tracking (MT) Brillouin microscopy and evaluate the ability of MT Brillouin metrics to differentiate eyes with SKC from normal control eyes.

Design: Prospective cross-sectional study.

Participants: Thirty eyes from 30 patients were evaluated, including 15 eyes from 15 bilaterally normal patients and 15 eyes with SKC from 15 patients.

Methods: All patients underwent Scheimpflug tomography and MT Brillouin microscopy using a custom-built device. Mean and minimum MT Brillouin values within the anterior plateau region and anterior 150 μm were generated. Scheimpflug metrics evaluated included inferior-superior (IS) value, maximum keratometry (K), thinnest corneal thickness, asymmetry indices, Belin/Ambrosio display total deviation, and Ambrosio relational thickness. Receiver operating characteristic (ROC) curves were generated for all Scheimpflug and MT Brillouin metrics evaluated to determine the area under the ROC curve (AUC), sensitivity, and specificity for each variable.

Main Outcome Measures: Discriminative performance based on AUC, sensitivity, and specificity.

Results: No significant differences were found between groups for age, sex, manifest refraction spherical equivalent, corrected distance visual acuity, K, or KISA% index. Among Scheimpflug metrics, significant differences were found between groups for thinnest corneal thickness (556 μm vs. 522 μm; P < 0.001), IS value (0.29 diopter [D] vs. 1.05 D; P < 0.001), index of vertical asymmetry (IVA; 0.10 vs. 0.19; P < 0.001), and keratoconus index (1.01 vs. 1.05; P < 0.001), and no significant differences were found for any other Scheimpflug metric. Among MT Brillouin metrics, clear differences were found between control eyes and eyes with SKC for mean plateau (5.71 GHz vs. 5.68 GHz; P < 0.0001), minimum plateau (5.69 GHz vs. 5.65 GHz; P < 0.0001), mean anterior 150 μm (5.72 GHz vs. 5.68 GHz; P < 0.0001), and minimum anterior 150 μm (5.70 GHz vs. 5.66 GHz; P < 0.001). All MT Brillouin plateau and anterior 150 μm mean and minimum metrics fully differentiated groups (AUC, 1.0 for each), whereas the best performing Scheimpflug metrics were keratoconus index (AUC, 0.91), IS value (AUC, 0.89), and IVA (AUC, 0.88).

Conclusions: Motion-tracking Brillouin microscopy metrics effectively characterize focal corneal biomechanical alterations in eyes with SKC and clearly differentiated these eyes from control eyes, including eyes that were not differentiated accurately using Scheimpflug metrics.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117393PMC
http://dx.doi.org/10.1016/j.ophtha.2023.10.011DOI Listing

Publication Analysis

Top Keywords

brillouin microscopy
16
eyes skc
16
anterior 150
16
150 μm
16
motion-tracking brillouin
12
brillouin metrics
12
scheimpflug metrics
12
ghz 00001
12
eyes
10
brillouin
9

Similar Publications

Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.

View Article and Find Full Text PDF

Tetrafluoro(aryl)sulfanylated Bicyclopentane Crystals That Self-Destruct upon Cooling.

J Am Chem Soc

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, California 95616, United States.

Article Synopsis
  • Single crystals of organic compounds that respond to heat or light are well-studied, but those showing extreme mechanical response are less common in research.
  • A tetrafluoro(aryl)sulfanylated bicyclopentane developed in this study exhibited a low-temperature thermosalient effect, where crystals jumped and disintegrated at temperatures below ∼193 K.
  • Investigations using various techniques revealed that the mechanical response is not solely due to a chemical transformation or phase transition, but rather related to the release of built-up strain and possibly influenced by microstructural changes or impurities within the crystal.
View Article and Find Full Text PDF

Purpose: To evaluate the long-term effects of implantable collamer lens (ICL) V4c on the biomechanical and morphological properties of crystalline lenses in Chinese adults with high myopia using Brillouin microscopy (BM).

Methods: In this case-control study, 102 highly myopic eyes from 102 patients (18-48 years, preoperative spherical equivalent (SE): -6.00--21.

View Article and Find Full Text PDF
Article Synopsis
  • Strontium-barium niobate (SrBaNbO) films are promising for microwave applications due to their high dielectric nonlinearity and low losses.
  • The films were synthesized on sapphire substrates using magnetron sputtering, and their structural features were analyzed through various methods, focusing on Brillouin light scattering.
  • Brillouin light scattering proved to be an effective nondestructive technique for examining the films' structures, allowing precise determination of their thickness and unique properties influenced by acoustic wave scattering.
View Article and Find Full Text PDF

Optoacoustic lenses for lateral sub-optical resolution elasticity imaging.

Photoacoustics

February 2025

Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom.

In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses with different focal lengths. Pump light illuminating the optoacoustic lens generates a focusing acoustic field, and Brillouin scattered probe light allows the acoustic field to be continuously monitored over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!