Based on previous finding showing 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indole as suitable scaffold of novel inhibitors of acetylcholinesterase (AChE), a main target of drugs for the treatment of Alzheimer's disease and related dementias, herein we investigated diverse newly and previously synthesized β-enamino esters (and ketones) derivatives of 1,4,7,8-tetrahydroazocines (and some azonines) fused with benzene, 1H-indole, 4H-chromen-4-one and pyrimidin-4(3H)-one. Twenty derivatives of diversely annelated eight-to-nine-membered azaheterocyclic ring, prepared through domino reaction of the respective tetrahydropyridine and azepine with activated alkynes, were assayed for the inhibitory activity against AChE and butyrylcholinesterase (BChE). As a major outcome, compound 7c, an alkylamino derivative of tetrahydropyrimido[4,5-d]azocine, was found to be a highly potent BChE-selective inhibitor, which showed a noncompetitive/mixed-type inhibition mechanism against human BChE with single digit nanomolar inhibition constant (K = 7.8 ± 0.2 nM). The four-order magnitude BChE-selectivity of 7c clearly reflects the effect of lipophilicity upon binding to the BChE binding cavity. The ChEs' inhibition data, interpreted by chemoinformatic tools and an in-depth in-silico study (molecular docking combined with molecular dynamics calculations), not only highlighted key structural factors enhancing inhibition potency and selectivity toward BChE, but also shed light on subtle differences distinguishing the binding sites of equine BChE from the recombinant human BChE. Compound 7c inhibited P-glycoprotein with IC of 0.27 μM, which may support its ability to permeate blood-brain barrier, and proved to be no cytotoxic in human liver cancer cell line (HepG2) at the BChE bioactive concentrations. Overall, the biological profile allows us to envision 7c as a promising template to improve design and development of BChE-selective ligands of pharmaceutical interest, including inhibitors and fluorogenic probes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2023.110741 | DOI Listing |
ChemMedChem
December 2024
Central China Normal University, State Key Laboratory of Green Pesticide, CHINA.
Butyrylcholinesterase plays an indispensable role in organisms, and its abnormal expression poses a significant threat to human health and safety, covering various aspects including liver-related diseases, diabetes, obesity, cardiovascular and cerebrovascular diseases, and neurodegenerative diseases. In addition, toxic substances such as organophosphorus and carbamate pesticides markedly inhibit BChE activity. BChE activity serves as a critical parameter for the clinical diagnosis of acute organophosphorus pesticide poisoning and the evaluation of organophosphorus and carbamate pesticide residues.
View Article and Find Full Text PDFIn our study, the biological activities of the wild edible mushroom Cantharellus cibarius were determined. First of all, 64 different experiments were performed in the Soxhlet device at 40-70°C extraction temperatures, 4, 6, 8, and 10 h of extraction time and 0.25, 0.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
A ratiometric fluorescence-photothermal dual-mode assay method is constructed for the detection of butyrylcholinesterase (BChE) activity based on time-resolved levodopa (L-DOPA) cascade polymerization. First, a newly designed bimetallic metal-organic framework (MOF), Eu/Co-DPA (DPA: pyridine-2,6-dicarboxylic acid), is screened out as a fluorescent nanozyme with high catalytic activity and superior luminescence properties. In the presence of boric acid (BA), L-DOPA forms BA-esterified L-DOPA, which is catalyzed by Eu/Co-DPA to form the oligomers with strong blue fluorescence.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA.
New conjugates of amiridine and salicylic derivatives (salicylamide, salicylimine, and salicylamine) with different lengths of alkylene spacers were designed, synthesized, and evaluated as potential multifunctional central nervous system therapeutic agents for Alzheimer's disease (AD). Conjugates demonstrated high acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition (IC: AChE, 0.265-4.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy.
Bridging the gap between cortical morphometric remodeling and gene expression can help to clarify the effects of the selective brain accumulation of Amyloid-β (Aβ) and tau proteins occurring in the Alzheimer's disease (AD). To this aim, we derived morphometric similarity (MS) networks from 126 Aβ- and tau-positive (Aβ+/tau+) and 172 Aβ-/tau- subjects, and we investigated the association between group-wise regional MS differences and transcriptional correlates thanks to an imaging transcriptomics approach grounded in the Allen Human Brain Atlas (AHBA). The expressed gene with the highest correlation with MS alterations was , a gene related to Aβ homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!