Evidence of vertical transmission of fowl adenovirus 8b in ducks.

Vet Microbiol

College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China. Electronic address:

Published: November 2023

Fowl adenovirus mainly causes hydropericardium hepatitis syndrome (HHS), inclusion body hepatitis (IBH) and gizzard erosion (GE), etc. In 2015, the first outbreak of HHS was reported in broiler chickens in central China, followed by an outbreak in waterfowl. The first outbreak of HHS in broiler flocks in central China in 2015, followed by outbreaks in waterfowl, has severely restricted the healthy development of the poultry industry. During the investigation, fowl adenovirus was detected in ducklings from a total of seven hatcheries in Shandong, Inner Mongolia and Jiangsu provinces. In addition, the DNA of fowl adenovirus was detected in breeding ducks and their progeny. To test the hypothesis that FAdV can be transmitted vertically, sixty 250-day-old Cherry Valley breeder ducks were divided equally into three groups for experimental infection. FAdV-8b SDLY isolate (duck/Shandong/SDLY/2021, SDLY) preserved in our laboratory was injected intramuscularly into group A and inoculated orally into group B. FAdV-8b DNA was detected in the yolk membranes, embryos and allantoic fluid of duck embryos in the FAdV-infected group after inoculation. In addition, the FAdV-8b hexon gene isolated from yolk membranes, embryos, allantoic fluid and duck eggs was close to 100% nucleotide homology to the FAdV-8b hexon gene isolated from laying duck ovaries, indicating that fowl adenovirus can be transmitted vertically in ducks. These findings provide evidence for the possible vertical transmission of fowl adenovirus from breeder ducks to ducklings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2023.109888DOI Listing

Publication Analysis

Top Keywords

fowl adenovirus
24
evidence vertical
8
vertical transmission
8
transmission fowl
8
outbreak hhs
8
central china
8
adenovirus detected
8
transmitted vertically
8
breeder ducks
8
yolk membranes
8

Similar Publications

Coinfection of avian hepatitis E virus and different serotypes of fowl adenovirus in chicken flocks in Shaanxi, China.

Microbiol Spectr

December 2024

Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.

Unlabelled: In poultry, fowl adenovirus (FAdV) and co-infected viruses (such as avian hepatitis E virus, aHEV) are likely to cause decreased egg production, inclusion body hepatitis, and pericardial effusion syndrome. From July to September 2023, eight poultry farms of commercial broilers and commercial layers suffered from increased mortality, decreased egg production, and the presence of hydropericardium-hepatitis syndrome-like gross lesions in Shaanxi province, China. To determine the source of the infection, the viruses of aHEV, FAdV, avian leukosis virus (ALV), Marek's disease virus (MDV), Newcastle disease virus (NDV), and H9N2 avian influenza virus (AIV) were detected.

View Article and Find Full Text PDF

Background: Fowl adenovirus (FAdV) is a globally distributed virus that inflicts significant economic losses on the poultry industry. The study aimed at pathological investigation, molecular characterization, isolation, and pathogenicity determination of FAdV from commercial poultry.

Methods: A total of 86 liver samples were collected from 80 commercial chicken farms.

View Article and Find Full Text PDF

Objectives: The study aimed to inactivate the FAdV isolate (UPM11142P5B1) produced in a bioreactor and assess the humoral and cellular immunity, efficacy, and virus shedding in broiler chickens.

Materials And Methods: The isolate was grown in a bioreactor, inactivated using binary ethyleneimine, adjuvanted with Montanide 71VG, and injected into day-old broiler chickens either with or without booster groups. The following parameters were measured: T lymphocyte profile in the liver, spleen, and thymus; FAdV antibody titer; clinical symptoms; gross and histological alterations in the liver, spleen, and thymus; virus copy number in the liver and cloacal shedding.

View Article and Find Full Text PDF

Fowl adenovirus serotype 4 (FAdV-4) outbreaks have caused significant economic losses in the Chinese poultry industry since 2015. The relationships among viral structural proteins in infected hosts are relatively unknown. To explore the role of different parts of the fiber-1 protein in FAdV-4-infected hosts, we truncated fiber-1 into fiber-1-Δ1 (73-205 aa) and fiber-1-Δ2 (211-412 aa), constructed pEF1α-HA-fiber-1-Δ1 and pEF1α-HA-fiber-1-Δ2 and then transfected them into leghorn male hepatocyte (LMH) cells.

View Article and Find Full Text PDF

Identification of novel T-cell epitopes on viral protein VP4 of Infectious Bursal Disease Virus (IBDV) that play critical roles in eliciting cellular immune response.

Int J Biol Macromol

January 2025

National Key Laboratory of Veterinary Public Health Security, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. Electronic address:

Infectious bursal disease virus (IBDV) is a highly infectious RNA virus that causes severe damage to the bursa of Fabricius (BF), resulting in immunosuppression. Currently, IBDV vaccines mainly rely on the induction of neutralizing antibodies against VP2 for protection, and the role of cellular immunity against IBDV infection is unclear. Here, we show that IBDV VP4, a serine protease of the virion, is responsible for inducing specific T cell immunity against IBDV infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!