Microbial driven coupled processes between denitrification and methane/sulfur metabolism play a very substantial role in accelerating nitrogen removal in river sediments. Until now, little is known about how element coupling processes alter nitrogen metabolism by the microbial functional communities. The primary objective of this research was to clarify the contributory role of microbial-mediated coupled processes in controlling denitrification. Specifically, the study sought to identify the key bioindicators (or metabolic pathway) for preferably regulating and predicting potential denitrification rate (PDR). Here, a total of 40 sediment samples were collected from the inflow rivers of Chaohu Lake under nitrogen stress. The results revealed the ecological importance of methanogens and sulfate reducing bacteria in the microbial interaction network. Correlations between quantitative or predicted genes showed that the methanogenic gene (mcrA) was synergistic with denitrifying genes, further unraveling that the key role of methanogenesis in denitrification process for facilitating nitrogen removal. The PDR of sediments ranged from 0.03 to 133.21 μg N·g·h. The study uncovered specific environmental factors (NH and OM) and microbial indicators (nosZ, mcrA, Paracoccus, Thauera, Methanobrevibacter and Desulfomicrobium) as potential contributors to the variations in PDR. Structural Equation Model (SEM) analysis revealed a significant direct effect of NH on PDR, evidenced by a standardized coefficient (λ) of 0.77 (P < 0.001). Additionally, the findings also emphasized the salient role of methanogens (Methanobrevibacter) and methanogenic gene (mcrA) in indicating PDR. The research's aforementioned findings shed light on the substantial consequences of methanogenesis on nitrogen metabolism in coupled processes, enabling improved control of nitrogen pollution in river sediments. This study provided fresh perspectives on the effects of multiple functional taxa on denitrification, and reinforces the significance of coupling processes for nitrogen removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119320DOI Listing

Publication Analysis

Top Keywords

potential denitrification
8
coupled processes
8
nitrogen removal
8
denitrification
5
regulation potential
4
denitrification rates
4
rates sediments
4
sediments microbial-driven
4
microbial-driven elemental
4
elemental coupled
4

Similar Publications

Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).

View Article and Find Full Text PDF

Simultaneous nitrogen removal and phosphorus recovery in granular sludge-based partial denitrification/anammox-hydroxyapatite precipitation (PD/A-HAP) process under low C/N ratio and dissolved oxygen limitation.

Bioresour Technol

January 2025

School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.

This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.

View Article and Find Full Text PDF

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

Effects of pristine and photoaged tire wear particles and their leachable additives on key nitrogen removal processes and nitrous oxide accumulation in estuarine sediments.

J Hazard Mater

January 2025

School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China. Electronic address:

Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (NO) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.

View Article and Find Full Text PDF

Multi-omics reveals mechanism of hydroxylamine-enhanced ultimate nitrogen removal in pilot-scale anaerobic/aerobic/anoxic system.

Water Res

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China. Electronic address:

Hydroxylamine (HA) dosing is an effective strategy for promoting partial nitrification (PN); however, its impact on endogenous denitrification remains underexplored. In this study, long-term continuous HA dosing (1.4 mg/L) was introduced for over 110 days in a pilot-scale anaerobic/aerobic/anoxic (AOA) system treating municipal wastewater (66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!