The application of mixed stabilizing materials promotes the feasibility of the intercropping system of Gynostemma pentaphyllum/Helianthus annuus L. on arsenic contaminated soil.

J Environ Manage

Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China. Electronic address:

Published: December 2023

Intercropping technology and stabilizing materials are common remediation techniques for soils contaminated with heavy metals. This study investigated the feasibility of the Gynostemma pentaphyllum (G. pentaphyllum)/Helianthus annuus L. (H. annuus) intercropping system on arsenic (As) contaminated farmland through field and pot experiments and the regulation of plant As absorption by the application of mixed stabilizing materials in this intercropping system. Field experiments demonstrated that intercropping with H. annuus increased the As concentration in G. pentaphyllum leaves to 1.79 mg kg but still met the requirements of the national food standard of China (2 mg kg) (GB2762-2017). Meanwhile, G. pentaphyllum yield in the intercropping system decreased by 15.09%, but the difference was insignificant (P > 0.05). Additionally, the As bioconcentration (BCA) per H. annuus plant in the intercropping system was significantly higher than that in the monoculture system, increasing by 76.37% (P < 0.05). The pot experiment demonstrated that when granite powder, iron sulfate mineral, and "Weidikang" soil conditioner were applied to the soil collectively, G. pentaphyllum leaf As concentration in the intercropping system could be significantly reduced by 42.17%. Rhizosphere pH is the most crucial factor affecting As absorption by G. pentaphyllum in intercropping systems. When these three stabilizing materials were applied simultaneously, the As bioaccumulation (BCA) per H. annuus plant was significantly higher than that of normal intercropping treatment, which increased by 71.12% (P < 0.05), indicating that the application of these stabilizing materials significantly improved the As removal efficiency of the intercropping system. Dissolved organic carbon (DOC) concentration in the rhizosphere soil is the most pivotal factor affecting As absorption by H. annuus. In summary, the G. pentaphyllum-H. annuus intercropping model is worthy of being promoted in moderately As polluted farmland. The application of granite powder, iron sulfate mineral, and "Weidikang" soil conditioner collectively to the soil can effectively enhance the potential of this intercropping model to achieve "production while repairing" in the As polluted farmland.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119284DOI Listing

Publication Analysis

Top Keywords

intercropping system
20
stabilizing materials
12
application mixed
8
mixed stabilizing
8
pentaphyllum/helianthus annuus
8
arsenic contaminated
8
intercropping
7
system
6
annuus
5
materials promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!