Pharmaceuticals excreted after administration can pollute water sources given their ineffective removal in conventional wastewater treatment plant. Among the techniques used during tertiary wastewater treatment, adsorption is an effective and cost-efficient method for removing antibiotics. This study aimed to investigate the adsorption of ciprofloxacin (CIP) on metal-doped granular activated carbon (GAC) and evaluate the impact of urine on CIP adsorption for pristine, pre-oxidized, and metal-doped GAC. The results showed that the uptake of CIP by iron (Fe)-doped GAC was higher than Ag-doped, pre-oxidized, and pristine GAC in single-solute isotherms (DI water). This higher uptake was attributed to the presence of Fe content (1.2%) on the carbon surface, which can strongly interact with zwitterionic CIP at a neutral pH. However, when synthetic human urine was introduced, the adsorption of CIP was negatively affected due to pore blockage and competition for available sorption sites on the GAC. Among the four types of GACs tested, the lowest reduction in CIP uptake in the urine solution was observed for Fe-doped GAC followed (%17) by pre-oxidized (64%), Ag-doped (%69), and pristine F400 (76%) carbon. These results suggested that the complexation between CIP and Fe-doped GAC in urine was stronger due to its higher functionalization compared to Ag-doped, pre-oxidized, and pristine GAC. As the equilibrium concentration of CIP increased, the competition between CIP and urine decreased on the surface of Fe-doped carbon, owing to the limited competition from urine for the available active sorption sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119298 | DOI Listing |
J Environ Manage
December 2023
School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, 85287-5306, USA. Electronic address:
Pharmaceuticals excreted after administration can pollute water sources given their ineffective removal in conventional wastewater treatment plant. Among the techniques used during tertiary wastewater treatment, adsorption is an effective and cost-efficient method for removing antibiotics. This study aimed to investigate the adsorption of ciprofloxacin (CIP) on metal-doped granular activated carbon (GAC) and evaluate the impact of urine on CIP adsorption for pristine, pre-oxidized, and metal-doped GAC.
View Article and Find Full Text PDFSci Total Environ
October 2023
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
Granular activated carbon (GAC) supplementation is an efficient method for enhancing methane production during the anaerobic digestion of food waste, but it remains unclear which type of GAC is optimal and what potential mechanisms are involved with different types of GAC, particularly for the methanogenic system of carbohydrate-rich food waste. This study selected three commercial GAC (GAC#1, GAC#2, GAC#3) with very distinct physical and chemical properties, and investigated their impacts on the methanogenesis of carbohydrate-rich food waste with an inoculation/substrate ratio of 1. Results indicated that Fe-doped GAC#3 had a lower specific surface area but higher conductivity, yet exhibited superior performance in facilitating methanogenesis compared with GAC#1 and GAC#2, which possessed larger specific surface areas.
View Article and Find Full Text PDFWater Sci Technol
July 2004
Department of Environmental Engineering, Yonsei University, Wonju Campus, Hyeung-up Myon, Korea.
The purpose of this study was to investigate the catalytic role of granular activated carbon (GAC), and metal (Mn or Fe) doped-GAC, on the transformation of ozone into more reactive secondary radicals, such as hydroxyl radicals (*OH), for the treatment of wastewater. The GAC doped with Mn showed the highest catalytic performance in terms of ozone decomposition into OH radicals. Likewise, activated carbon alone accelerated the ozone decomposition, resulting in the formation of *OH radicals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!