A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inokosterone activates the BMP2 to promote the osteogenic differentiation of bone marrow mesenchymal stem cells and improve bone loss in ovariectomized rats. | LitMetric

Evidence suggests that enhancing the osteogenic ability of bone marrow-derived mesenchymal stem cells (BMSCs) may be beneficial in the fight against osteoporosis (OP) effects. Inokosterone (IS) is a major active constituent of Achyranthis bidentatae radix (ABR), which stimulates osteogenic differentiation of mouse embryonic osteoblasts. This study aims to investigate effect of IS on OP using osteogenic differentiated BMSCs and ovariectomy (OVX)-induced OP rats. The BMSCs were treated with 50, 100, or 200 mg/L IS and OP rats were given 2 or 4 mg/kg of IS by gavage. Cell viability, the osteogenic differentiation marker protein expression level, and mineralization were observed. This study proved that IS improved cell viability, osteogenic differentiation, and cellular mineralization in BMSCs and raised expression levels of bone morphogenetic protein-2 (BMP2), Smad1, runt-related transcription factor 2 (RUNX2), collagen I, ALP, and OCN. By BMP2 knockdown/overexpression, this study also proved the BMP2 signaling pathway activation is a potential biological mechanism of IS to improve osteogenic differentiation and mineralization in osteogenic differentiated BMSCs. In OVX-induced OP rats, IS was observed to antagonize bone loss, improve osteogenic differentiation marker protein expression levels, and activate BMP-2, smad1, and RUNX2. These findings provide scientific support for further investigation of the biological mechanisms of IS in ameliorating OP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.10.032DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
24
osteogenic
9
mesenchymal stem
8
stem cells
8
bone loss
8
osteogenic differentiated
8
differentiated bmscs
8
ovx-induced rats
8
cell viability
8
viability osteogenic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!