The widespread use of cryopreserved in vitro produced (IVP) bovine embryos is limited due to their low post-warming viability compared to their ex vivo derived counterparts. Therefore, the present study aimed to analyse in detail the consequences of cryopreservation (vitrification and slow freezing) on the bioenergetic profile of the embryo and its mitochondria. To accomplish that, day 7 IVP embryos were separated in a non-cryopreserved control group (fresh, n = 120, 12 replicates) or were either slow frozen (slow frozen, n = 60, 6 replicates) or vitrified (vitrified, n = 60, 6 replicates). An in-depth analysis of the bioenergetic profiles was then performed on these 3 groups, analysing pools of 10 embryos revealing that embryo cryopreservation both via vitrification and slow freezing causes profound changes in the bioenergetic profile of bovine embryos. Noteworthy, fresh embryos demonstrate a significantly (P < 0.05) higher oxygen consumption rate (OCR) compared to vitrified and slow frozen counterparts (0.858 ± 0.039 vs. 0.635 ± 0.048 vs. 0.775 ± 0.046 pmol/min/embryo). This was found to be largely due to significantly reduced mitochondrial oxygen consumption in both vitrified and deep-frozen embryos compared to fresh counterparts (0.541 ± 0.057 vs. 0.689 ± 0.044 vs. 0.808 ± 0.025 pmol/min/embryo). Conversely, slow-frozen thawed blastocysts showed 1.8-fold (P < 0.05) higher non-mitochondrial OCR rates compared to fresh embryos. Maximum mitochondrial respiration of vitrified and slow-frozen embryos was significantly reduced by almost 1.6-fold compared to fresh embryos and the proportion of ATP-linked respiration showed significantly lower values in vitrified thawed embryos compared to fresh embryos (1.1-fold, P < 0.05). Likewise, vitrification-warming and freeze-thawing reduced reactive glycolytic capacity (1.4 fold, 1.2-fold)as well as compensatory glycolytic capacity to provide energy in response to mitochondrial deficiency (1.3-fold and 1.2-fold, P < 0.05). In conclusion, the present study has, to the best of our knowledge, identified for the first time a comprehensive overview of typical altered metabolic features of the bioenergetic profile of bovine embryos after cryopreservation, which have great potential to explain the detrimental effects of cryopreservation on embryo viability. Avoidance of these detrimental effects through technical improvements is therefore suggested to be mandatory to improve the viability of bovine embryos after cryopreservation-warming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2023.10.002 | DOI Listing |
J Pineal Res
January 2025
Institute of Physiology, Sleep Research & Clinical Chronobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
While artificial light in urban environments was previously thought to override seasonality in humans, recent studies have challenged this assumption. We aimed to explore the relationship between seasonally varying environmental factors and changes in sleep architecture in patients with neuropsychiatric sleep disorders by comparing two consecutive years. In 770 patients, three-night polysomnography was performed at the Clinic for Sleep & Chronomedicine (St.
View Article and Find Full Text PDFPharmaceutics
December 2024
Nanofaber S.r.l., Via Anguillarese 301, 00123 Rome, Italy.
Background/objectives: This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation and damage, while MTX is a common disease-modifying antirheumatic drug (DMARD), the conventional use of which is limited by adverse effects and the lack of release control.
Methods: MSP were synthesized as freeze-dried powder to increase their stability and allow for a facile reconstitution prior to administration and precise MTX dosing.
Cryobiology
January 2025
Specialized Surgical Hospital "Doctor Malinov", 46, Gotse Delchev blvd., 1860, Sofia, Bulgaria.
The cryopreservation of human spermatozoa is an integral part of cryobiology, aiming to support the in-vitro fertilization. The latter relies on the availability of as much as possible reproductively active spermatozoa, whose number after thawing decreases due to the accompanied freezing injury and the cytotoxicity of cryoprotectants. An innovative option to circumvent these obstacles is to make the freezing interface non-wettable, by coating it with rapeseed oil soot possessing intrinsic cryoprotective properties, delaying the ice formation and possibly providing identical rates of intracellular dehydration and extracellular crystallization.
View Article and Find Full Text PDFBiomater Adv
December 2024
College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:
In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.
View Article and Find Full Text PDFTheriogenology
December 2024
University of Utrecht, Department of Clinical Sciences, Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!