Drug-free macromolecular therapeutics (DFMT) utilizes modified monoclonal antibodies (or antibody fragments) to generate antigen-crosslinking-induced apoptosis in target cells. DFMT is a two-component system containing a morpholino oligonucleotide (MORF1) modified antibody (Ab-MORF1) and human serum albumin conjugated with multiple copies of complementary morpholino oligonucleotide (MORF2), (HSA-(MORF2) ). The two components recognize each other via the Watson-Crick base pairing complementation of their respective MORFs. One HSA-(MORF2) molecule can hybridize with multiple Ab-MORF1 molecules on the cell surface, thus serving as the therapeutic crosslink-inducing mechanism of action. Herein, various anti-neoplastic agents in combination with the anti-CD20 Obinutuzumab (OBN)-based DFMT system are examined. Three different classes of chemotherapies are examined: DNA alkylating agents; proliferation pathway inhibitors; and DNA replication inhibitors. Chou-Talalay combination index mathematics is utilized to determine which drugs engaged synergistically with OBN-based DFMT. It is determined that OBN-based DFMT synergizes with topoisomerase inhibitors and DNA nucleotide analogs but is antagonistic with proliferation pathway inhibitors. Cell mechanism experiments are performed to analyze points of synergism or antagonism by investigating Ca influx, mitochondrial health, lysosomal stability, and cell cycle arrest. Finally, the synergistic drug combinatorial effects of OBN-based DFMT with etoposide in vivo are demonstrated using a human xenograft non-Hodgkin's lymphoma mouse model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202300375 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!