A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile synthesis of FeCeO nanoparticles encapsulated carbon nitride catalyst for highly efficient and recyclable synthesis of substituted imidazoles. | LitMetric

Herein, we developed a novel composite called FeCeO@g-CN through a combination of sonication, sintering, and hydrothermal techniques to implement the principles of green chemistry by utilizing reusable nanocomposites in one-pot reactions. To gain a comprehensive understanding of the catalyst's structure, composition, and morphology, various characterization methods were employed. These included FT-IR analysis to examine chemical bonds, SEM and TEM imaging to visualize the catalyst's surface and internal structure, TGA to assess thermal stability, EDS for elemental composition analysis, and XRD to determine crystal structure. The FeCeO@g-CN nanocatalyst demonstrated remarkable efficacy in the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazole. Noteworthy features of this catalyst included high percentage yield, mild reaction conditions, short reaction time, and an efficient and straightforward procedure. Furthermore, the FeCeO@g-CN composite exhibited excellent recyclability and reusability. It could be recycled and reused up to four times without a significant decline in catalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576832PMC
http://dx.doi.org/10.1038/s41598-023-44747-7DOI Listing

Publication Analysis

Top Keywords

facile synthesis
4
synthesis feceo
4
feceo nanoparticles
4
nanoparticles encapsulated
4
encapsulated carbon
4
carbon nitride
4
nitride catalyst
4
catalyst highly
4
highly efficient
4
efficient recyclable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!