A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of cluster repeated mini-batch training method to classify electroencephalography for grab and lift tasks. | LitMetric

Application of cluster repeated mini-batch training method to classify electroencephalography for grab and lift tasks.

Med Eng Phys

Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam. Electronic address:

Published: October 2023

Modern deep neural network training is based on mini-batch stochastic gradient optimization. While using extensive mini-batches improves the computational parallelism, the small batch training proved that it delivers improved generalization performance and allows a significantly smaller memory, which might also improve machine throughput. However, mini-batch size and characteristics, a key factor for training deep neural networks, has not been sufficiently investigated in training correlated group features and looping with highly complex ones. In addition, the unsupervised learning method clusters the data into different groups with similar properties to make the training process more stable and faster. Then, the supervised learning algorithm was applied with the cluster repeated mini-batch training (CRMT) methods. The CRMT algorithm changed the random minibatch characteristics in the training step into training in order of clusters. Specifically, the self-organizing maps (SOM) were used to cluster the information into n groups based on the dataset's labels Then, neural network models (ANN) were trained with each cluster using the cluster repeated mini-batch training method. Experiments conducted on EEG datasets demonstrate the survey of the proposed method and optimize it. In addition, the results in our research outperform other state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2023.104041DOI Listing

Publication Analysis

Top Keywords

cluster repeated
12
repeated mini-batch
12
mini-batch training
12
training
10
training method
8
deep neural
8
neural network
8
mini-batch
5
application cluster
4
method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!