The Quantitative Structure Use Relationship (QSUR) Summit, held on November 2-4, 2022, focused on advancing the development, refinement, and use of QSURs to support chemical substance prioritization and risk assessment and mitigation. QSURs utilize chemical structures to predict the function of a chemical within a formulated product or an industrial process. This presumed function can then be used to develop chemical use categories or other information necessary to refine exposure assessments. The invited expert meeting was attended by 38 scientists from Canada, Finland, France, the UK, and the USA, representing government, business, and academia, with expertise in exposure science, chemical engineering, risk assessment, formulation chemistry, and machine learning. Workshop discussions emphasized the importance of collection and sharing of data and quantification of relative chemical quantities to progress QSUR development. Participants proposed collaborative approaches to address key challenges, including mechanisms for aggregating information while still protecting proprietary product composition and other confidential business information. Discussions also led to proposals for applications beyond exposure and risk modeling, including sustainable formulation discovery. In addition, discussions continue to construct, conduct, and circulate case studies tied to various specific problem formulations in which QSURs supply or derive information on chemical functions, concentrations, and exposures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295147 | PMC |
http://dx.doi.org/10.1016/j.yrtph.2023.105516 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.
Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.
View Article and Find Full Text PDFProteins have proven to be useful agents in a variety of fields, from serving as potent therapeutics to enabling complex catalysis for chemical manufacture. However, they remain difficult to design and are instead typically selected for using extensive screens or directed evolution. Recent developments in protein large language models have enabled fast generation of diverse protein sequences in unexplored regions of protein space predicted to fold into varied structures, bind relevant targets, and catalyze novel reactions.
View Article and Find Full Text PDFUnlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.
View Article and Find Full Text PDFWe report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.
View Article and Find Full Text PDFCureus
December 2024
Pharmacology, Maharaja's Institute of Medical Sciences, Vizianagaram, IND.
Background Self-medication is commonly practiced, especially among medical students, administrative staff, and faculty from preclinical and paraclinical departments, driven by accessibility, familiarity with medications, and perceived convenience. This study explored the incidence, patterns, and factors influencing self-medication within the Xavier University School of Medicine, Aruba, with a primary focus on medical students and administrative staff. The faculty included in the study were from preclinical and paraclinical departments such as anatomy, physiology, biochemistry, pathology, forensic medicine, microbiology, and community medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!