Acute myeloid leukemia (AML) is an aggressive cancer, which is characterized by clonal expansion of myeloid progenitors in the bone marrow and peripheral blood. FMS-like tyrosine kinase 3 (FLT3) mutations are the most frequently identified mutations, present in approximately 25-30 % AML patients, making FLT3 inhibitors a crucial treatment option for AML. In this study, we described the design, synthesis and biological evaluation of a series of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Notably, compound 15 displayed potent kinase inhibitory activities against FLT3 (FLT3-WT IC = 7.42 ± 1.23 nM; FLT3-D835Y IC = 9.21 ± 0.04 nM) and robust antiproliferative activities against MV4-11 cells (IC = 0.83 ± 0.15 nM) and MOLM-13 cells (IC = 10.55 ± 1.70 nM). Compound 15 also possessed potent antiproliferative activities against BaF3 cells carrying various FLT3-TKD and FLT3-ITD-TKD mutations, indicating its potential to overcome on-target resistance caused by FLT3 mutations. In summary, compound 15 showed promising potential for further exploration as a treatment of AML.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2023.129519 | DOI Listing |
Clin Transl Med
January 2025
Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
Precision medicine in less-defined subtype diffuse large B-cell lymphoma (DLBCL) remains a challenge due to the heterogeneous nature of the disease. Programmed cell death (PCD) pathways are crucial in the advancement of lymphoma and serve as significant prognostic markers for individuals afflicted with lymphoid cancers. To identify robust prognostic biomarkers that can guide personalized management for less-defined subtype DLBCL patients, we integrated multi-omics data derived from 339 standard R-CHOP-treated patients diagnosed with less-defined subtype DLBCL from three independent cohorts.
View Article and Find Full Text PDFExpert Opin Ther Pat
December 2024
Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
Introduction: Approximately one-third of all AML patients have a mutation in the Fms-like tyrosine kinase 3 () gene, which is associated with a poor prognosis in these individuals. The 2017 approval of midostaurin, the first FLT3 inhibitor, spurred extensive development of more potent and selective inhibitors with an improved safety profile.
Areas Covered: This review analyzes patent inventions for the treatment of AML using FLT3 inhibitors, covering developments from the earliest to the most recent, disclosed in 2024.
Front Pediatr
December 2024
Laboratory of Translational Research, Children's Hospital of Brasília, Brasília, Brazil.
Introduction: There is consistent evidence that may be a driver gene in B-ALL and that selected cases may benefit from the use of FLT3 inhibitors. Our study was conducted to evaluate the frequency and types of FLT3 mutations in pediatric patients with B-ALL, the relative expression of this gene, and their influence on clinical evolution.
Methods: We evaluated 156 children with B-ALL treated between July 2018 and September 2023.
Bioorg Med Chem Lett
December 2024
Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:
FLT3-ITD and TKD mutants play a central role in acute myeloid leukemia (AML), making FLT3 an attractive target for AML treatment. To discover next-generation FLT3 inhibitors and gather additional structure-activity relationship (SAR) information, we performed structural modifications of G-749 (denfivontinib) utilizing structure simplification and scaffold hopping strategies. Among these derivatives, MY-10 exhibited the most potent and selective inhibition of MV4-11 cell proliferation, demonstrating potent inhibitory activity against FLT3-ITD (IC = 6.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China. Electronic address:
FMS-like tyrosine receptor kinase 3 (FLT3) mutations, the most common genetic alterations found in acute myeloid leukemia (AML) patients, have been pursued as an ideal drug discovery target for the AML therapy. Taking compound 2 as lead, a series of pyridine derivatives bearing 1,2,3-triazole moiety were rationally designed and synthesized. The bioassays confirmed that these derivatives exerted potent antileukemia effects, and compound 12y was found to be the most potent one.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!