Ethnopharmacological Relevance: The Total Glucosides of White Paeony Capsule (TGPC), one of the traditional Chinese patent medicines, has been used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) in clinical practice. Besides, the components of TGPC are extracted from Radix Paeoniae Alba (RPA) and have displayed neuroprotective properties.
Aim Of The Study: The present study was designed to evaluate the anti-PD-like effects of TGPC on a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mice model and explore its potential molecular mechanisms.
Materials And Methods: Behavioral tests, hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), western blotting (WB) and Enzyme-Linked Immunosorbent Assay (ELISA) were performed in this study.
Results: It was observed that TGPC treatment (150, 300 mg/kg) significantly reversed MPTPinduced PD-like behaviors, such as reduced locomotive activity in the open field test, prolonged time to turn downward on the ball (T-turn) and to climb down the whole pole (T-descend) in the pole test, decreased movement scores in the traction test and extended the latency to fall in the hanging wire test. In addition, TGPC improved neurodegeneration, inhibited the excessive activation of microglia and suppressed the overproduction of proinflammatory cytokines induced by MPTP, partially by restoring leucine-rich repeat kinase 2 (LRRK2) activity and inhibiting alpha-synuclein (α-syn) mediated neuroinflammation signaling.
Conclusion: Taken together, TGPC exhibited neuroprotective effects on MPTP-induced mice model of PD, which was associated with the prevention of neuroinflammation and neurodegeneration modulated by LRRK2/α-syn pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.117319 | DOI Listing |
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Anhui Provincial Center for Neural Regeneration Technology and New Medical Materials Engineering Research, Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the role of mitochondrial autophagy disorder caused by deletion of E3 ubiquitin ligase Parkin in neuroinflammation in a mouse model of MPTP-induced Parkinson's disease (PD).
Methods: Wild-type (WT) male C57BL/6 mice and Parkin mice were given intraperitoneal injections with MPTP or PBS for 5 consecutive days, and the changes in motor behaviors of the mice were observed using open field test. The effects of Parkin deletion on PD development and neuroinflammation were evaluated using immunofluorescence and Western blotting.
Metab Brain Dis
December 2024
Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 02447, Seoul, Republic of Korea.
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons. In particular, neuroinflammation associated with phosphorylation of c-Jun N-terminal kinase (JNK) is likely to cause the death of dopaminergic neurons. Therefore, protecting dopaminergic neurons through anti-neuroinflammation is a promising therapeutic strategy for PD.
View Article and Find Full Text PDFBehav Pharmacol
December 2024
Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences.
Parkinson's disease (PD), characterized by death of dopaminergic neurons in the substantia nigra, is the second most prevalent progressive neurodegenerative disease. However, the etiology of PD is largely elusive. This study employed the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model to examine the effectiveness of 1,4-dihydroxy-2-naphthoic acid (1,4-DHNA), an aryl hydrocarbon receptor (AhR) active gut bacteria-derived metabolite, in mitigating MPTP's motoric deficits, and the role of AhR in mediating these effects.
View Article and Find Full Text PDFiScience
October 2024
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166 Messina, Italy.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common genetic causes of Parkinson's disease (PD). Studies demonstrated that variants in LRRK2 genetically link intestinal disorders to PD. We aimed to evaluate whether the selective inhibitor of LRRK2, PF-06447475 (PF-475), attenuates the PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in central nervous system (CNS) and in the gastrointestinal system.
View Article and Find Full Text PDFJ Tradit Chin Med
December 2024
College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
Objective: To assess (ARE) neuroprotective function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and related genes.
Methods: Examined mRNA-DNA methylation changes induced by ARE in MPTP-induced Parkinson's disease (PD) model's substantia nigra.
Results: ARE mitigated MPTP-induced motor impairment in rotarod and open field tests and preserved tyrosine hydroxylase-positive neuronal cells in substantia nigra and striatum.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!