AI Article Synopsis

Article Abstract

This study aims at the development of electrospun polylactic acid nanofibers (PLLA NFs) incorporating smart daclatasvir-loaded chitosan gelatin nanoparticles to be used as medical textiles. First, smart nanoparticles were prepared through ionic gelation and optimized using Design Expert® software where daclatasvir (DAC), chitosan (CS), and gelatin (GL) amounts were selected to be the independent variables. DAC was used owing to its reported Anti-SARS-CoV-2 activity, CS was chosen due to its antimicrobial activity and GL was used owing to its sensitivity to be hydrolyzed upon exposure to Papain-like protease enzyme (PLpro). The optimum DAC-CS/TAN NPs possessed 109 nm size and 94.44 % entrapment efficiency in addition to sustained drug release for 14 days. Furthermore, upon exposure to PLpro, smart DAC-CS/GL NPs released the whole DAC amount within 3 h. Then, DAC-CS/GL NPs were incorporated within PLLA NFs through electrospinning. Swellability was found to increase gradually reflecting the controlled release of DAC from nanofibers within 3 weeks. Cell viability assessments using human fibroblasts showed that the developed nanofibers possess high biocompatibility. An in-vivo animal model for skin irritation was carried out for two weeks where visual inspection and histopathological investigations showed that neither edema nor erythema were observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127350DOI Listing

Publication Analysis

Top Keywords

medical textiles
8
plla nfs
8
chitosan gelatin
8
dac-cs/gl nps
8
antimicrobial anti-sars-cov-2
4
anti-sars-cov-2 activities
4
smart
4
activities smart
4
smart daclatasvir-chitosan/gelatin
4
daclatasvir-chitosan/gelatin nanoparticles-in-plla
4

Similar Publications

Acylase-Based Coatings on Sandblasted Polydimethylsiloxane-Based Materials for Antimicrobial Applications.

Polymers (Basel)

January 2025

Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal.

Indwelling medical devices, such as urinary catheters, often experience bacterial colonization, forming biofilms that resist antibiotics and the host's immune defenses through quorum sensing (QS), a chemical communication system. This study explores the development of antimicrobial coatings by immobilizing acylase, a quorum-quenching enzyme, on sandblasted polydimethylsiloxane (PDMS) surfaces. PDMS, commonly used in medical devices, was sandblasted to increase its surface roughness, enhancing acylase attachment.

View Article and Find Full Text PDF

Targeting Cytokine-Mediated Inflammation in Brain Disorders: Developing New Treatment Strategies.

Pharmaceuticals (Basel)

January 2025

Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.

Cytokine-mediated inflammation is increasingly recognized for playing a vital role in the pathophysiology of a wide range of brain disorders, including neurodegenerative, psychiatric, and neurodevelopmental problems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) cause neuroinflammation, alter brain function, and accelerate disease development. Despite progress in understanding these pathways, effective medicines targeting brain inflammation are still limited.

View Article and Find Full Text PDF

As an innovative branch of electronics, intelligent electronic textiles (e-textiles) have broad prospects in applications such as e-skin, human-computer interaction, and smart homes. However, it is still a challenge to distinguish multiple stimuli in the same e-textile. Herein, we propose a dual-parameter smart e-textile that can detect human pulse and body temperature in real time, with high performance and no signal interference.

View Article and Find Full Text PDF

A Graphene/MXene-Modified Flexible Fabric for Infrared Camouflage, Electrothermal, and Electromagnetic Interference Shielding.

Nanomaterials (Basel)

January 2025

Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.

Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.

View Article and Find Full Text PDF

As global populations become increasingly aged, existing elderly care models are proving insufficient. The development and application of nursing robots have shown potential in addressing the challenges of elder care in aging societies. This perspective outlines current state and potential applications of nursing robots in promoting healthy aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!