Molecular dynamic modeling of EPS and inorganic/organic flocculants during sludge dual conditioning.

Sci Total Environ

Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Published: January 2024

AI Article Synopsis

Article Abstract

Extracellular polymeric substances (EPS) are the key components determining the dewatering behavior of wastewater sludge. However, current technical optimization of sludge conditioning for dewatering is limited by the poor understanding of the conditioner-EPS interactions at molecular levels. Herein, a combination of molecular dynamic (MD) simulations, dewaterability assessment and EPS characterization was used to reveal the sludge dewatering mechanisms using dual conditioning processes (prevalent inorganic (poly aluminum chloride (PAC)) and organic (poly dimethyl diallyl ammonium chloride (PDDA)). Results suggested that PAC and PDDA bridged the biopolymers mainly through electrostatic interactions, promoting the agglomeration of biopolymers and reducing their contact probability with water molecules. Water molecules were tightly bound to EPS mainly through hydrogen bonding with polar oxygen-containing functional groups. The adsorption of PAC and PDDA on hydrophilic components reduced the molecular polarity of biopolymers and altered the conformation of water molecules in the hydration shell, resulting in a decreased hydration capacity of EPS and the release of bound water, and sludge dewaterability was improved. PAC was found to be more effective than PDDA in disrupting the hydrogen bonding between water molecules and EPS, especially the protein β-sheet structure inside the molecular clusters with its high charge strength and diffusivity. Sludge bound water decreased by 73.16 % after PAC conditioning. In addition, PDDA exhibited superior agglomeration ability to biopolymers and promoted the electrostatic interaction between PAC and polar groups during dual conditioning. The strength and hydrophobicity of EPS molecular clusters were thus enhanced, and the conditioning efficiency was improved. This study offers molecular-level insights into the coagulation treatment process of sludge and provides theoretical references for process optimization and new conditioner development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167719DOI Listing

Publication Analysis

Top Keywords

water molecules
16
dual conditioning
12
molecular dynamic
8
pac pdda
8
hydrogen bonding
8
bound water
8
molecular clusters
8
eps
7
sludge
7
molecular
6

Similar Publications

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems.

Water Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!