Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Macrophages play an important role in the pathogenesis of atherosclerosis (AS) by mediating oxidative stress, inflammation and lipid metabolism, which can lead to the formation of vascular plaque. The Rac family isoforms of small molecules GTPase are active by binding to GTPase, but are inactivated by binding to GDP, and play a role in the switch of cell information conduction. This experiment adopts shRNA interference THP-1 cells respectively each subtype expression and inhibiting Rac1, Rac2, Rac3 activity, each subtype of Rac family on lipid metabolism, inflammatory reaction and oxidative stress. THP-1 cells were stimulated with Ox-LDL to establish AS cell models including lipid loading, adhesion, migration and chemotaxis. Oil Red O staining, cell immunofluorescence, scratching test, transwell, Western blot and other experiments were performed. To observe the different effects of three subtypes of Rac family on multiple links in the foaming process of THP-1 cells. ApoE mice on a high-fat diet were used as animal models to examine the effects of Rac subtypes in vivo. The results showed that the activation of immune cells induced by ox-LDL was inhibited when Rac1, Rac2 and Rac3 in THP-1 were decreased, respectively. Thus, Rac1 and Rac3 act in combination with ox-LDL and are associated with cellular oxidative stress and inflammation. This study provides new means and ideas for finding potential intervention targets that have important regulatory effects on atherosclerosis, and provides a new direction for the development of clinical drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2023.10.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!