T-hyperintense lesions are the key imaging marker of multiple sclerosis (MS). Previous studies have shown that the white matter surrounding such lesions is often also affected by MS. Our aim was to develop a new method to visualize and quantify the extent of white matter tissue changes in MS based on relaxometry properties. We applied a fast, multi-parametric quantitative MRI approach and used a multi-component MR Fingerprinting (MC-MRF) analysis. We assessed the differences in the MRF component representing prolongedrelaxation time between patients with MS and controls and studied the relation between this component's volume and structural white matter damage identified on FLAIR MRI scans in patients with MS. A total of 48 MS patients at two different sites and 12 healthy controls were scanned with FLAIR and MRF-EPI MRI scans. MRF scans were analyzed with a joint-sparsity multi-component analysis to obtain magnetization fraction maps of different components, representing tissues such as myelin water, white matter, gray matter and cerebrospinal fluid. In the MS patients, an additional component was identified with increased transverse relaxation times compared to the white matter, likely representing changes in free water content. Patients with MS had a higher volume of the long- component in the white matter of the brain compared to healthy controls (B (95%-CI) = 0.004 (0.0006-0.008), p = 0.02). Furthermore, this MRF component had a moderate correlation (correlation coefficient R 0.47) with visible structural white matter changes on the FLAIR scans. Also, the component was found to be more extensive compared to structural white matter changes in 73% of MS patients. In conclusion, our MRF acquisition and analysis captured white matter tissue changes in MS patients compared to controls. In patients these tissue changes were more extensive compared to visually detectable white matter changes on FLAIR scans. Our method provides a novel way to quantify the extent of white matter changes in MS patients, which is underestimated using only conventional clinical MRI scans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589890 | PMC |
http://dx.doi.org/10.1016/j.nicl.2023.103528 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!