Effect of TAVR commissural alignment on coronary flow: A fluid-structure interaction analysis.

Comput Methods Programs Biomed

Barcelona Supercomputing Center, Computer Applications in Science and Engineering, Plaça d'Eusebi Güell, 1-3, 08034, Barcelona, Spain.

Published: December 2023

Background And Objectives: Coronary obstruction is a complication that may affect patients receiving Transcatheter Aortic Valve Replacement (TAVR), with catastrophic consequences and long-term negative effects. To enable healthy coronary perfusion, it is fundamental to appropriately position the device with respect to the coronary ostia. Nonetheless, most TAVR delivery systems do not control commissural alignment to do so. Moreover, no in silico study has directly assessed the effect of commissural alignment on coronary perfusion. This work aims to evaluate the effect of TAVR commissural alignment on coronary perfusion and device performance.

Methods: A two-way computational fluid-structure interaction model is used to predict coronary perfusion at different commissural alignments. Moreover, in each scenario, hemodynamic biomarkers are evaluated to assess device performance.

Results: Commissural misalignment is shown to reduce the total coronary perfusion by -3.2% and the flow rate to a single coronary branch by -6.8%. It is also observed to impair valvular function by reducing the systolic geometric orifice area by -2.5% and increasing the systolic transvalvular pressure gradients by +5.3% and the diastolic leaflet stresses by +16.0%.

Conclusions: The present TAVR patient model indicates that coronary perfusion, hemodynamic and structural performance are minimized when the prosthesis commissures are fully misaligned with the native ones. These results support the importance of enabling axial control in new TAVR delivery catheter systems and defining recommended values of commissural alignment in upcoming clinical treatment guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107818DOI Listing

Publication Analysis

Top Keywords

coronary perfusion
24
commissural alignment
20
alignment coronary
12
coronary
10
tavr commissural
8
fluid-structure interaction
8
tavr delivery
8
tavr
6
perfusion
6
commissural
6

Similar Publications

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.

View Article and Find Full Text PDF

Cardiogenic shock represents a critical condition in which the heart is unable to maintain adequate circulation leading to insufficient tissue perfusion and end-organ failure. Temporary mechanical circulatory support offers the potential to stabilize patients, provide a bridge-to-recovery, provide a bridge-to-decision, or facilitate definitive heart replacement therapies. Although randomized controlled trials have been performed in infarct-related cardiogenic shock and refractory cardiac arrest, the optimal timing, appropriate patient selection, and optimal implementation of these devices remain complex and predominantly based on observational data and expert consensus, especially in non-ischaemic shock.

View Article and Find Full Text PDF

Adenosine is extensively utilized in myocardial stress perfusion imaging for the detection and risk stratification of coronary artery disease. It has a well-established safety profile. The majority of the undesirable effects experienced during adenosine infusion are transient (owing to its brief half-life of ~10 s) and arise from the stimulation of receptors in the atrio-ventricular (AV) node (AV block) and bronchial smooth muscles (bronchospasm).

View Article and Find Full Text PDF

Purposes: The objective was to evaluate the accuracy of a novel CT dynamic angiographic imaging (CT-DAI) algorithm for rapid fractional flow reserve (FFR) measurement in patients with coronary artery disease (CAD).

Materials And Methods: This retrospective study included 14 patients (age 58.5 ± 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!