MRI-based parameter inference for cerebral perfusion modelling in health and ischaemic stroke.

Comput Biol Med

Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, The Netherlands.

Published: November 2023

Cerebral perfusion modelling is a promising tool to predict the impact of acute ischaemic stroke treatments on the spatial distribution of cerebral blood flow (CBF) in the human brain. To estimate treatment efficacy based on CBF, perfusion simulations need to become suitable for group-level investigations and thus account for physiological variability between individuals. However, computational perfusion modelling to date has been restricted to a few patient-specific cases. This study set out to establish automated parameter inference for perfusion modelling based on neuroimaging data and thus enable CBF simulations of groups. Magnetic resonance imaging (MRI) data from 75 healthy senior adults were utilised. Brain geometries were computed from healthy reference subjects' T1-weighted MRI. Haemodynamic model parameters were determined from spatial CBF maps measured by arterial spin labelling (ASL) perfusion MRI. Thereafter, perfusion simulations were conducted in 75 healthy cases followed by 150 acute ischaemic stroke cases representing an occlusion and CBF cessation in the left and right middle cerebral arteries. The anatomical fitness of the brain geometries was evaluated by comparing the simulated grey (GM) and white matter (WM) volumes to measurements in healthy reference subjects. Strong positive correlations were found in both tissue types (GM: Pearson's r 0.74, P<0.001; WM: Pearson's r 0.84, P<0.001). Haemodynamic parameter tuning was verified by comparing the total volumetric blood flow rate to the brain in healthy reference subjects and simulations (Pearson's r 0.89, P<0.001). In acute ischaemic stroke cases, the simulated infarct volume using a perfusion-based estimate was 197±25 ml. Computational predictions were in agreement with anatomical and haemodynamic values from the literature concerning T1-weighted, T2-weighted, and phase-contrast MRI measurements in healthy scenarios and acute ischaemic stroke cases. The acute stroke simulations did not capture small infarcts (left tail of the distribution), which could be explained by neglected compensatory mechanisms, e.g. collaterals. The proposed parameter inference method provides a foundation for group-level CBF simulations and for in silico clinical stroke trials which could assist in medical device and drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107543DOI Listing

Publication Analysis

Top Keywords

perfusion modelling
16
ischaemic stroke
12
parameter inference
8
cerebral perfusion
8
acute ischaemic
8
perfusion simulations
8
brain geometries
8
healthy reference
8
perfusion
7
cbf
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!