Combined ultrasound and low temperature pretreatment improve the content of anthocyanins, phenols and volatile substance of Merlot red wine.

Ultrason Sonochem

College of Enology, Northwest A & F University, Yangling 712100, Shaanxi, China; Heyang Viti-viniculture Station, Northwest A & F University, Yangling 712100, Shaanxi, China. Electronic address:

Published: November 2023

Ultrasound combined with low temperature treatment is a new food processing technology. In this study, low temperature, three ultrasound power levels, and their combinations were adopted in the must before fermentation to study their effects on Merlot red wine. The results showed that ultrasound combined with low temperature pretreatment increased the total and monomer contents of anthocyanins and phenols, affected the color of the wine, and significantly increased its antioxidant capacity. In particular, 240 W of ultrasound combined with low temperature pretreatment reduced the bad odors (caprylic acid, benzaldehyde, and 1-ethanol content) and improved the flower and fruit aroma (1-octanol and phenethyl acetate), as well as the aftertaste, thus improving the quality of the wine. Ultrasound combined with low temperature pretreatment positively affected the quality of Merlot red wine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585341PMC
http://dx.doi.org/10.1016/j.ultsonch.2023.106636DOI Listing

Publication Analysis

Top Keywords

low temperature
24
temperature pretreatment
16
ultrasound combined
16
combined low
16
merlot red
12
red wine
12
wine ultrasound
12
anthocyanins phenols
8
low
6
temperature
6

Similar Publications

Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.

View Article and Find Full Text PDF

Background: 65% of persons with dementia (PWD) suffer from disturbed sleeping patterns and 28% experience vision related falls. Improved lighting has been shown in numerous studies since the 1980s to mitigate these effects.

Method: Computer code was written to optimize the spectra and intensity of light for vision and non-vision purposes over a 24-hour cycle based on off-the-shelf LEDs.

View Article and Find Full Text PDF

In ion-pair catalysis, the last intermediate structures prior to the stereoselective transition states are of special importance for predictive models due to the high isomerization barrier between - and -substrate double bonds connecting ground and transition state energies. However, in prior experimental investigations of chiral phosphoric acids (CPA) solely the early intermediates could be investigated while the key intermediate remained elusive. In this study, the first experimental structural and conformational insights into ternary complexes with CPAs are presented using a special combination of low temperature and relaxation optimized N HSQC-NOESY NMR spectroscopy to enhance sensitivity.

View Article and Find Full Text PDF

Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

View Article and Find Full Text PDF

Cold exposure reinstates NAD levels and attenuates hepatocellular carcinoma.

Cell Stress

December 2024

Growth Factors, Nutrients and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO) Madrid, ES28029 Spain.

Cold exposure has been historically used for medicinal purposes, but its benefits and associated mechanisms in mammalian organisms still remain unclear. Here, we explore the chemoprotective properties of cold temperature using a mouse model of hepatocellular carcinoma (HCC) that recapitulates several human features. Chronic cold exposure is shown to prolong lifespan in diseased mice, enhance liver health, and suppress the development of aggressive HCC, preventing hepatocellular hypertrophy, high-grade oval cell hyperplasia, liver steatosis, and aberrant hepatocyte hyperproliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!