Removal ibuprofen from aqueous solution by a noval Al-modified biochar.

Environ Sci Pollut Res Int

School of Chemistry and Environmental Engineering, China University of Mining and Technology Beijing, Beijing, 100083, China.

Published: November 2023

With the increase of organic emissions in production and human life, the pollution control of organic is now an urgent problem in the environmental field. In this study, hydrothermal carbonization rice husk-loaded Al-modified biochar (Al-BC) was synthesized, and the results of scanning electron microscopy could be used to determine that Al oxide composite was loaded on the surface of the material. The specific surface area was 57.049 m g, pore volume was 0.254 cm g, and average pore diameter was 8.922 nm for BC and 109.617 m g, 0.215 cm g, and 3.969 nm for Al-BC, respectively. The control effects of these two adsorption materials on organic pollutant ibuprofen (IBU) under different pH conditions were also investigated. The research results show that the adsorption capacity of Al-BC (30.24-1.48 mg g) is better than BC (19.98-0.92 mg g) at pH from 2 to 11. Solution pH plays a crucial role in IBU adsorption from organic solution. The Langmuir fitting results show that at pH = 7, the saturated adsorption capacity of IBU on BC could reach up to 18.68 mg g; the adsorption capacity on Al-BC was 60.49 mg g. The thermodynamic parameters indicate that the adsorption is spontaneous, endothermic, and increased disorder. The adsorption material prepared in this study could provide a reference for organic pollution control in water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-30245-wDOI Listing

Publication Analysis

Top Keywords

adsorption capacity
12
al-modified biochar
8
pollution control
8
capacity al-bc
8
adsorption
7
organic
5
removal ibuprofen
4
ibuprofen aqueous
4
aqueous solution
4
solution noval
4

Similar Publications

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS.

View Article and Find Full Text PDF

Study of methylene blue removal and photocatalytic degradation on zirconia thin films modified with Mn-Anderson polyoxometalates.

Dalton Trans

January 2025

Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.

Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.

View Article and Find Full Text PDF

CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.

View Article and Find Full Text PDF

Molecular dynamics simulations reveal efficient heavy metal ion removal by two-dimensional Cu-THQ metal-organic framework membrane.

Sci Rep

January 2025

Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.

Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively utilized across various research areas. However, the application of 2D MOF-based membranes for the removal of heavy metal ions remains largely unexplored, despite their potential as suitable candidates due to their inherent porosity. In this study, we employed molecular dynamics (MD) simulations to investigate the capacity of a typical 2D MOF, Cu-THQ, for the separation of heavy metal ions, including Cd²⁺, Cu²⁺, Hg²⁺, and Pb²⁺.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!