Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.13074DOI Listing

Publication Analysis

Top Keywords

primary cilia
28
cilia length
12
leukemia inhibitory
8
inhibitory factor
8
cilia
8
c-c motif
8
motif chemokine
8
neural stem/progenitor
8
stem/progenitor cells
8
lif treatment
8

Similar Publications

Cilia assembly and function rely on the bidirectional transport of components between the cell body and ciliary tip via Intraflagellar Transport (IFT) trains. Anterograde and retrograde IFT trains travel along the B- and A-tubules of microtubule doublets, respectively, ensuring smooth traffic flow. However, the mechanism underlying this segregation remains unclear.

View Article and Find Full Text PDF

In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level.

View Article and Find Full Text PDF

MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring.

View Article and Find Full Text PDF

Biliary atresia (BA) is a progressive hepatobiliary disease in infants, leading to liver failure and the need for transplantation. While its etiopathogenesis remains unclear, recent studies suggest primary cilia (PC) disruption plays a role. This study investigates correlations between PC and cytoplasmic tubulin (TUBA4A) alterations with hypoxia in patients with the isolated form of BA, focusing on native liver survival.

View Article and Find Full Text PDF

A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth.

Nat Struct Mol Biol

January 2025

Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!