In this article, a novel front-end circuit for remote two-wire resistive sensors that is insensitive to the wire resistances is proposed and experimentally characterized. The circuit relies on an OpAmp-based current source with a square-wave excitation, two twin diodes in the feedback path, and a low-pass filter at the output. Using such a circuit topology, the output is a DC voltage proportional to the sensor resistance and independent of the wire resistances. A prototype was built measuring resistances that correspond to a Pt100 thermal sensor and with different values of wire resistance. The experimental results show that the output voltage is almost insensitive to both the wire resistances and their mismatch, with a relative error (with respect to the case with null parasitic resistance) in the range of 0.01-0.03% Full-Scale Span (FSS). In addition, the proposed circuit shows a remarkable linearity (around 0.01% FSS), and again this is independent of the presence and also of the mismatch of the wire resistances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575345 | PMC |
http://dx.doi.org/10.3390/s23198228 | DOI Listing |
Materials (Basel)
January 2025
School of Civil Engineering, Central South University, Changsha 410075, China.
To reveal the mechanical behavior and deformation patterns of geotechnical reinforcement materials under tensile loading, a series of tensile tests were conducted on plastic geogrid rib, fiberglass geogrid rib, gabion steel wire, plastic geogrid mesh, fiberglass geogrid mesh, and gabion mesh. The full tensile force-strain relationships of the reinforcement materials were obtained. The failure modes of different geotechnical reinforcement materials were discussed.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
Background: Obesity, a major risk factor for cardiovascular disease (CVD), is associated with hypertension and vascular dysfunction. Perivascular adipose tissue (PVAT), a metabolically active tissue surrounding blood vessels, plays a key role in regulating vascular tone. In obesity, PVAT becomes dysregulated which may contribute to vascular dysfunction; how sex impacts the remodelling of PVAT and thus the altered vascular contractility during obesity is unclear.
View Article and Find Full Text PDFBeijing Da Xue Xue Bao Yi Xue Ban
February 2025
Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100101, China.
Objective: To compare the cyclic fatigue resistance of nickel-titanium files made by 3 new heat treatment in simulated S-shaped root canals at different temperatures.
Methods: Gold heat-treated nickel-titanium files TruNatomy (25 mm, tip size 26#/0.04) and ProTaper Gold (25 mm, tip size 25#/0.
Heliyon
January 2025
University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Rua Luís Reis Santos, 3030-788, Coimbra, Portugal.
Recent advancements in aerospace industry demand intricate aero-engine parts, leading to the increased use of titanium alloys, particularly Ti-17, due to its high strength, thermal stability, and corrosion resistance. However, its low thermal conductivity and tool wear tendency pose significant machining challenges, impacting surface integrity, fatigue life, and overall component performance. This study investigates the Wire Electrical Discharge Cutting (WEDC) process, revealing that the mechanism behind improved surface integrity lies in the controlled thermal input, which minimizes phase transformations and reduces residual stresses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!