We report on organoboron complexes characterized by very small energy gaps (ΔE) between their singlet and triplet states, which allow for highly efficient harvesting of triplet excitons into singlet states for working as thermally activated delayed fluorescence (TADF) devices. Energy gaps ranging between 0.01 and 0.06 eV with dihedral angles of ca. 90° were registered. The spin-orbit couplings between the lowest excited S and T states yielded reversed intersystem crossing rate constants (K) of an average of 10 s. This setup accomplished radiative decay rates of ca. 10 s, indicating highly potent electroluminescent devices, and hence, being suitable for application as organic light-emitting diodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574585 | PMC |
http://dx.doi.org/10.3390/molecules28196952 | DOI Listing |
Nat Commun
November 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, China.
Hydroxybenzylamines are prevalent in drugs and bioactive molecules, including various antimalarial and anticancer drugs. α-tertiary alkylation of amines impacts drug-target interactions significantly through their influence on basicity and lipophilicity. Traditional N-alkylation methods, especially for α-tertiary amines, suffer from limitations due to high energy barriers from steric hindrance.
View Article and Find Full Text PDFAcc Chem Res
December 2024
College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China.
JACS Au
October 2024
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
This study aims to develop a method for the chiral analysis of organoboron compounds using nuclear magnetic resonance (NMR) spectroscopy. It addresses the longstanding challenge associated with these chiral organoboron compounds, which often require derivatization and pretreatment prior to chromatographic analysis. Our method utilizes tridentate ligands to facilitate effective ligand exchange and incorporates fluorine labels, allowing for the precise discrimination of F NMR signals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Two donor-acceptor dyes with an -phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers.
View Article and Find Full Text PDFNat Commun
October 2024
Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!