Prenatal alcohol exposure is the cause of impaired growth and a wide range of developmental and behavioral disorders in the child. Improper eating patterns are commonly associated with fetal alcohol spectrum disorders (FASD) and may contribute to poor nutrition and growth restriction. To date, there have been only a few studies investigating the hormonal regulation of appetite in patients with FASD. We analyzed the levels of neuropeptide Y (NPY), Agouti signaling protein (ASP), alpha-melanocyte-stimulating hormone (α-MSH), and kisspeptin (KISS1) in 57 patients with FASD and 23 healthy controls. A comparison of the hormone levels studied was also performed in subgroups of fetal alcohol syndrome (FAS) and neurobehavioral disorder associated with prenatal alcohol exposure (ND PAE), as well as in males and females. We have found no differences in hormone levels tested between affected individuals and the controls and between FASD subgroups. In addition, sex had no effect on hormone levels. However, we identified some associations between hormone concentrations and parameters describing the clinical status of patients with FASD. Most of them concerned ASP, which has shown a positive correlation with age and hormones involved in appetite and metabolism, such as proopiomelanocortin (POMC) and adrenocorticotropic hormone (ACTH). We have also found a negative correlation of α-MSH with age, BMI percentile, and glycated hemoglobin (HbA1c). Furthermore, we found a weak negative correlation of NPY with HbA1c. Although FASD has been associated with impaired child growth and development, including nutrition and puberty onset, we did not identify differences in the levels of the hormones studied, which may suggest that prenatal alcohol exposure does not affect the levels of these metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574197 | PMC |
http://dx.doi.org/10.3390/nu15194215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!