Excessive exercise without adequate rest can lead to overtraining syndrome, which manifests a series of side effects, including fatigue, gut dysbiosis, and decremental sports performance. Konjac glucomannan (KGM) is a plant polysaccharide with numerous health-improving effects, but few studies reported its effects on the gut microbiome, endurance, and strength in an overtraining model. This study assessed the effect of KGM on gut microbiome, endurance, and strength in mice with excessive exercise. Three doses of KGM (1.25, 2.50, and 5.00 mg/mL) were administrated in drinking water to mice during 42 days of a treadmill overtraining program. The results showed that excessive exercise induced a significant microbial shift compared with the control group, while a high dose (5.00 mg/mL) of KGM maintained the microbial composition. The proportion of in feces was significantly increased in the excessive exercise group, while the moderate dose (2.50 mg/mL) of KGM dramatically increased the relative abundance of and SCFA production in feces. Additionally, the moderate dose and high dose of KGM counteracted the negative effects of excessive exercise on strength or/and endurance (43.14% and 39.94% increase through a moderate dose of KGM, Bonferroni corrected < 0.05, compared with the excessive exercise group). Therefore, it suggests that KGM could prevent overtraining and improve sports performance in animal models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574454PMC
http://dx.doi.org/10.3390/nu15194206DOI Listing

Publication Analysis

Top Keywords

excessive exercise
28
gut microbiome
12
microbiome endurance
12
endurance strength
12
moderate dose
12
konjac glucomannan
8
side effects
8
effects excessive
8
strength overtraining
8
sports performance
8

Similar Publications

Background: Physical activity (PA) is recommended as a component of weight management for the prevention of weight gain and weight regain after weight loss. Yet, no study has adapted culturally appropriate PA for postmenopausal women's health.

Aims: The study aimed to investigate the effect of a developed culturally appropriate exercise program for Ghanaian postmenopausal women with excess weight gain on the anthropometrics and body composition.

View Article and Find Full Text PDF

Children with unilateral cerebral palsy (CP) exhibit abnormal movements due to atypical pelvic movements and weakness of trunk muscles. We investigated the effects of abdominal muscle strengthening and pelvic control exercises on trunk control, abdominal muscle thickness change rate, and pelvic movement in children with unilateral CP. Fourteen children with unilateral CP were randomly divided into two groups, and abdominal muscle strengthening and pelvic control exercises were applied to the experimental group, and general physical therapy was applied to the control group, 30 min per session, twice a week, for a total of 8 weeks, respectively.

View Article and Find Full Text PDF

Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.

View Article and Find Full Text PDF

Objective: Lower platelet monoamine oxidase (MAO) activity has consistently been associated with excessive risk-taking and general psychiatric vulnerability. How this peripheral measure can represent presumably centrally regulated complex behaviours is not clear but platelet MAO activity has been suggested to reflect the capacity of serotonin release in the brain. Secretion of prolactin is in part under serotonergic control and indicates serotonin release capacity.

View Article and Find Full Text PDF

Inappropriate, excessive, or overly strenuous training of sport horses can result in long-term injury, including the premature cessation of a horse's sporting career. As a countermeasure, this study demonstrates the easy implementation of a biomechanical load monitoring system consisting of five commercial, multi-purpose inertial sensor units non-invasively attached to the horse's distal limbs and trunk. From the data obtained, specific parameters for evaluating gait and limb loads are derived, providing the basis for objective exercise load management and successful injury prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!