Polycystic ovary syndrome (PCOS) is a common endocrine disorder that affects reproductive-age women and predisposes them to the development of metabolic disturbances. Recent research has shown that several metabolic factors may play a role in PCOS pathogenesis, and it has been suggested that an alteration in the amino acid profile might be a predictive sign of metabolic disorders. Metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) are concepts that have attracted scientific attention; however, a universal definition has not been established yet for these terms. Already existing definitions of MHO involve the coexistence of obesity with the absence or minimal presence of other metabolic syndrome parameters. A group of 326 women, 209 diagnosed with PCOS and 117 healthy individuals, participated in this study. Multiple parameters were assessed, including anthropometrical, biochemical, and hormonal ones, and gas-liquid chromatography, combined with tandem mass spectrometry, was used to investigate the amino acid profile. Statistical analysis revealed noticeably higher levels of all aromatic amino acids in PCOS women compared to the control group: phenylalanine 47.37 ± 7.0 vs. 45.4 ± 6.09 nmol/mL ( = 0.01), tyrosine 61.69 ± 9.56 vs. 58.08 ± 8.89 nmol/mL ( < 0.01), and tryptophan 53.66 ± 11.42 vs. 49.81 ± 11.18 nmol/mL ( < 0.01); however, there was no significant difference in the "tryptophan ratio" between the PCOS and control group ( = 0.88). A comparison of MHO and MUO PCOS women revealed that LAP, leucine, and isoleucine concentrations were significantly higher among the MUO subgroup: respectively, 101.98 ± 34.74 vs. 55.80 ± 24.33 ( < 0.001); 153.26 ± 22.26 vs. 137.25 ± 25.76 nmol/mL ( = 0.04); and 92.92 ± 16.09 vs. 82.60 ± 18.70 nmol/mL ( = 0.02). No significant differences in BMI, fasting glucose, and HOMA-IR between MHO and MUO were found: respectively, 35.0 ± 4.8 vs. 36.1 ± 4.6 kg/m ( = 0.59); 88.0 ± 6.0 vs. 87.73 ± 6.28 mg/dL ( = 0.67); and 3.36 ± 1.70 vs. 4.17 ± 1.77 ( = 0.1). The identification of altered amino acid profiles in PCOS holds potential clinical implications. Amino acids may serve as biomarkers for diagnosing and monitoring the metabolic status of individuals with PCOS. The alteration of BCAAs and AAAs may be involved in PCOS pathogenesis, but the underlying mechanism should be further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574162PMC
http://dx.doi.org/10.3390/nu15194153DOI Listing

Publication Analysis

Top Keywords

amino acid
16
acid profile
12
nmol/ml 001
12
pcos
9
aromatic amino
8
polycystic ovary
8
ovary syndrome
8
pcos pathogenesis
8
amino acids
8
pcos women
8

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!