The ubiquitous pollution by antibiotics and heavy metal ions has posed great threats to human health and the ecological environment. Therefore, we developed a self-propelled tubular micromotor based on natural fibers as an active heterogeneous catalyst for antibiotic degradation and adsorbent for heavy metal ions in soil/water. The prepared micromotors can move in the presence of hydrogen peroxide (HO) through a bubble recoil mechanism. The MnO NPs and MnFeO NPs loaded on the hollow fibers not only enabled self-driven motion and magnetic control but also served as activators of peroxymononsulfate (PMS) and HO to produce active free radicals SO and •OH. Benefiting from the self-propulsion and bubble generation, the micromotors can effectively overcome the disadvantage of low diffusivity of traditional heterogeneous catalysts, achieving the degradation of more than 90% TC in soil within 30 min. Meanwhile, due to the large specific surface area, abundant active sites, and strong negative zeta potential, the micromotors can effectively adsorb heavy metal ions in the water environment. In 120 min, self-propelled micromotors removed more than 94% of lead ions, an increase of 47% compared to static micromotors, illustrating the advantages of on-the-fly capture. The prepared micromotors with excellent catalytic performance and adsorption capacity can simultaneously degrade antibiotics and adsorb heavy metal ions. Moreover, the magnetic response enabled the micromotors to be effectively separated from the system after completion of the task, avoiding the problem of secondary pollution. Overall, the proposed micromotors provide a new approach to the utilization of natural materials in environmental applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574631PMC
http://dx.doi.org/10.3390/nano13192710DOI Listing

Publication Analysis

Top Keywords

heavy metal
16
metal ions
16
micromotors effectively
12
micromotors
9
antibiotics heavy
8
prepared micromotors
8
adsorb heavy
8
heavy
5
ions
5
multifunctional biotemplated
4

Similar Publications

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Potato ( L.) is the world's third most popular vegetable in terms of consumption and the fourth most produced. Potatoes can be easily cultivated in different climates and locations around the globe and often in soils contaminated by heavy metals due to industrial activities.

View Article and Find Full Text PDF

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Iron Deficiency Anemia Following Bariatric Surgery: A 10-Year Prospective Observational Study.

Nutrients

January 2025

Department of Internal Medicine and Geriatric Cardiology, Centre of Postgraduate Medical Education, Orlowski Hospital, 00-416 Warsaw, Poland.

Background: The long-term follow-up studies investigating the risk of anemia and iron deficiency following bariatric procedures are scarce. This study aimed to determine the influence of body weight reduction and type of bariatric surgery on iron metabolism parameters.

Methods: We included 138 consecutive patients who underwent bariatric surgery (120 underwent sleeve gastrectomy and 18 underwent other types of bariatric surgery) between 2010 and 2016.

View Article and Find Full Text PDF

Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.

Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!