Zirconium-based metallic glass films are promising materials for nanoelectronic and biomedical applications, but their mechanical behavior under different conditions is not well understood. This study investigates the effects of radio frequency (RF) power and test temperature on the nanostructure, morphology, and creep behavior of ZrCuAlNi metallic glass films prepared by RF magnetron sputtering. The films were characterized by X-ray diffraction and microscopy, and their mechanical properties were measured by a bulge test system. The results show that the films were amorphous and exhibited a transition from noncolumnar to columnar morphology as the RF power increased from 75 W to 125 W. The columnar morphology reduced the creep resistance, Young's modulus, residual stress, and hardness of the films. The creep behavior of the films was also influenced by the test temperature, with higher temperature leading to higher creep strain and lower creep stress. The findings of this study provide insights into the optimization of the sputtering parameters and the design of zirconium-based metallic glass films for various applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574776 | PMC |
http://dx.doi.org/10.3390/nano13192677 | DOI Listing |
Nat Commun
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Basic Medical Science, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Türkiye, Turkey.
Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.
Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.
Sci Rep
January 2025
Department of Nuclear and Renewable Energy Sources, Ural Federal University, Yekaterinburg, 620002, Russia.
The present investigation assessed the viability of utilizing a powdered clam shell in continuous adsorption to eliminate nickel ions from simulated wastewater. The breakthrough curves (BTC) were analyzed by altering the Q (inlet flow rate) in a glass column (ID 5 cm, H 35 cm) with a multi-port and filled with the powdered clamshell adsorbent (PCSA). The PCSA's nickel adsorption efficiency was maximum (87.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
Small
December 2024
Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China.
Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!