Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The interaction between metal particles and the oxide support, the so-called metal-support interaction, plays a critical role in the performance of heterogenous catalysts. Probing the dynamic evolution of these interactions under reactive gas atmospheres is crucial to comprehending the structure-performance relationship and eventually designing new catalysts with enhanced properties. Cobalt supported on TiO (Co/TiO) is an industrially relevant catalyst applied in Fischer-Tropsch synthesis. Although it is widely acknowledged that Co/TiO is restructured during the reaction process, little is known about the impact of the specific gas phase environment at the material's surface. The combination of soft and hard X-ray photoemission spectroscopies are used to investigate in situ Co particles supported on pure and NaBH-modified TiO under H, O, and CO:H gas atmospheres. The combination of soft and hard X-ray photoemission methods, which allows for simultaneous probing of the chemical composition of surface and subsurface layers, is one of the study's unique features. It is shown that under H, cobalt particles are encapsulated below a stoichiometric TiO layer. This arrangement is preserved under CO hydrogenation conditions (i.e., CO:H), but changes rapidly upon exposure to O. The pretreatment of the TiO support with NaBH affects the surface mobility and prevents TiO spillover onto Co particles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574330 | PMC |
http://dx.doi.org/10.3390/nano13192672 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!