In potato, high levels of nitrogen (N) can lead to excessive vegetative growth at the expense of tuber development, resulting in lower yield and poor-quality tubers. We found that () is expressed most strongly in the roots grown in N-rich media, and it positively regulates potato root growth under N-deficient conditions. We noted that StCLE4 functions as a negative regulator of normal shoot apex development similar to CLV3 in Arabidopsis. Transcriptomic analysis revealed that overexpression of resulted in the repression of the gene, a regulator of potato tuber initiation. -overexpressing stolons were converted into branches, that were similar to a mild phenotype of the () mutant. We also found that NIN-like proteins, key regulators of nitrate signaling bind to the regulatory sequence of in a yeast one-hybrid assay. Taken together, our findings suggest that StCLE4 regulates shoot, root, and stolon growth in potato.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574742 | PMC |
http://dx.doi.org/10.3390/plants12193468 | DOI Listing |
Science
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, CA, USA.
Strigolactones (SLs) are methylbutenolide molecules derived from β-carotene through an intermediate carlactonoic acid (CLA). Canonical SLs act as signals to microbes and plants, whereas noncanonical SLs are primarily plant hormones. The cytochrome P450 CYP722C catalyzes a critical step, converting CLA to canonical SLs in most angiosperms.
View Article and Find Full Text PDFPhysiol Plant
January 2025
International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.
Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.
View Article and Find Full Text PDFQuant Plant Biol
January 2025
Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
Silicon (Si), the most abundant mineral element in soil, functions as a beneficial element for plant growth. Higher Si accumulation in the shoots is required for high and stable production of rice, a typical Si-accumulating plant species. During the last two decades, great progresses has been made in the identification of Si transporters involved in uptake, xylem loading and unloading as well as preferential distribution and deposition of Si in rice.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
PeerJ
January 2025
Department of Field Crops, Aydin Adnan Menderes University, Aydin, Türkiye.
Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!