Anthracnose is one of the primary diseases in tea plants that affect tea yield and quality. The geographical distribution, occurrence regularity, and agronomic measures of tea plants with anthracnose have been researched for decades. However, the pathogenic cause of anthracnose in tea plants is diverse in different regions of the world. Identifying the specific pathogenic fungi causing tea anthracnose is an essential control measure to mitigate this disease. In this study, 66 and 45 isolates were obtained from three different types of diseased tea leaves. Based on multilocus phylogenetic and morphological analysis, eight known species of , , , , , , , , and were identified. This study is the first to report and in tea plants in China. was the most common species in this study and caused disease lesions around wounded areas of tea leaves. The dual trials in vitro indicated and were slightly inhibited. Co-inoculating and was superior to single inoculation at low concentrations. The main cause of anthracnose might be the concerted action of a variety of fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574372 | PMC |
http://dx.doi.org/10.3390/plants12193427 | DOI Listing |
Microbiol Spectr
January 2025
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA.
Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
In acidic soil conditions, aluminium (Al) limits crop growth and yields but benefits the growth of tea plants. Flavonols are suggested to form complexes with Al, enhancing Al accumulation in tea plants. The role of flavonols in promoting lateral root formation under Al stress remains unclear.
View Article and Find Full Text PDFSci Total Environ
January 2025
Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India. Electronic address:
More and more research is now being focused on the mercury contamination of remote mountain environments. This study aimed to explore the mountain soil of Tiger Hill, Darjeeling, through the lens of its mercury tolerant bacterial microbiome to characterize regional mercury pollution and isolate strains with mercury bioremediation potential. The soil bacteria isolated from the region displayed an extreme tolerance to mercury at previously unseen levels of up to 7 mg/mL.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China; Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Provincial Key Laboratory of Food Safety Monitoring and Quality Control, New-style Industrial Tea Beverage Green Manufacturing Joint Laboratory of Anhui Province, Anhui Agricultural University, Hefei, China. Electronic address:
Many consumers are adopting low-sugar and low-fat beverages to avoid excessive calories and the negative impact of high trans- and/or saturated fat on health and wellbeing. This article reviews strategies to reduce sugar, fat, and high trans- and/or saturated fat content in beverages while maintaining their desirable physicochemical and sensory attributes. It assesses the impact of various sugar and fat replacers on the aroma, taste, texture, appearance, and nutritional profile of beverages.
View Article and Find Full Text PDFMed J Malaysia
January 2025
Department of Mechanical engineering, IIT Madras.
Introduction: Green tea is a medicinal beverage extracted from the plant Camellia sinensis. Antioxidants that exist naturally can be extracted as pure compounds from their parent materials for nutraceutical and medicinal applications. The present study aims to assess the antioxidant activity of Zinc oxide-titanium dioxide nano-composites (ZnO-TiO2 NCs) containing green tea extract.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!