A long-term field experiment has been ongoing since 1999 at the Experimental Station of Vytautas Magnus University's Agriculture Academy. According to the latest edition of the International Soil Classification System, the soil in the experimental field can be classified as Planosol, with a silty medium-loam texture at a depth of 0-20 cm and a silty light-loam texture at a depth of 20-40 cm. Studies were carried out on winter wheat crops in 2014, 2017, and 2023. This research aimed to assess how different long-term tillage systems impact soil shear strength and aggregate stability, their interconnection, and the effect of crop residues on soil stability. The treatments were arranged using a split-plot design. In a two-factor field experiment, straw was removed from one part of the experimental field, while the entire straw yield was chopped and spread at harvest in the other part (Factor A). The subplot factor (Factor B) included three different tillage systems: conventional deep ploughing, cover cropping for green manure with no tillage, and no tillage. The soil samples were analyzed at the Laboratory of Agrobiology at Vytautas Magnus University's Agriculture Academy. The findings indicated that the long-term application of reduced tillage significantly increased the soil shear strength. Shallower tillage depths led to a higher soil shear strength, while the effect of spreading plant residues was relatively lower. The long-term tillage of different intensities, spreading plant residues, and catch crop cultivation for green manure did not significantly affect the soil structure. However, the soil structural stability was found to be highly dependent on soil tillage. Cover cropping for green manure with no tillage and no tillage alone positively affected the soil aggregate stability in the upper 0-10 cm and 10-25 cm layers. The correlation-regression analysis showed that, in the top 0-10 cm and 10-25 soil layers, there were moderate to strong correlations between the soil structural stability, soil shear strength, and the effect of crop residues on soil stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10574103 | PMC |
http://dx.doi.org/10.3390/plants12193386 | DOI Listing |
Adv Biotechnol (Singap)
December 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen City, 518107, China.
Soil Cadmium (Cd) contamination is a worldwide problem with negative impacts on human health. Cultivating the Cd-Pollution Safety Cultivar (Cd-PSC) with lower Cd accumulation in edible parts of plants is an environmentally friendly approach to ensure food security with wide application prospects. Specialized mechanisms have been addressed for Cd accumulation in crops.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
The use of nitrogen-fixing bacteria in agriculture is increasingly recognized as a sustainable method to boost crop yields, reduce chemical fertilizer use, and improve soil health. However, the microbial mechanisms by which inoculation with nitrogen-fixing bacteria enhance rice production remain unclear. In this study, rice seedlings were inoculated with the nitrogen-fixing bacterium R3 (Herbaspirillum) at the rhizosphere during the seedling stage in a pot experiment using paddy soil.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, People's Republic of China.
Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
November 2024
Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
Hydraulic redistribution (HR) is a critical ecological process whereby plant roots transfer water from wetter to drier soil layers, significantly impacting soil moisture dynamics and plant water and nutrient uptake. Yet a comprehensive understanding of the mechanism triggering HR and its influencing factors remains elusive. Here, we conducted a systematic meta-analysis to discuss the influence of soil conditions and plant species characteristics on HR occurrence.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!